Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1;\)Từ \(\left(a+b\right)=-7\Rightarrow\left(a+b\right)^3=-343\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-343\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-343\)
\(\Rightarrow a^3+b^3=-343-3.6.\left(-7\right)=-217\)
\(x^2+y^2=\left(x+y\right)^2-2xy=7^2-2.10=29\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=7^3-3.10.7=133\)
\(P=\left(x+y\right)\left(x^2+y^2\right)\left(x^3+y^3\right)\)
\(=7.29.133=26999\)
a) a^3+b^3
=(a+b).(a^2-ab+b^2)
=S.(a^2+2ab+b^2-3ab)
=S.(a+b)^2-3ab
=S.S^2-3P
=S^3-3P
\(A=a^3-b^3-84\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-84\)
\(=\left(a-b\right)\left\{\left(a-b\right)^2+3ab\right\}\)
\(=6.\left[6^2+3.9\right]=6.63=379\)
\(Ủng\)hộ nhak
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab==2^2+4\cdot3=16\)
Giả sử \(a\ge b\ge c\)
\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\)
\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\)
\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)
\(\ge12\)
ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)
Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)