K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

= (√2+√3+√6+√8+√4+√4)/(√2+√3+√4)
= [(√2+√3+√4) + (√4+√6+√8)]/(√2+√3+√4)
= [(√2+√3+√4) + (√2.√2+√2.√3+√2.√4)]/(√2+√3+√4)
= [(√2+1)(√2+√3+√4)]/(√2+√3+√4)
= √2 + 1

21 tháng 6 2019

Tính :\(a,\)\(-\sqrt{\left(-6\right)^2}=-|-6|=-6\)

\(b,\)\(-\sqrt{\frac{-25}{-16}}=-\sqrt{\left(\frac{5}{4}\right)^2}=-|\frac{5}{4}|=-\frac{5}{4}\)

\(c,\)\(\sqrt{-\frac{-9}{25}}=\sqrt{\frac{9}{25}}=\sqrt{\left(\frac{3}{5}\right)^2}=|\frac{3}{5}|=\frac{3}{5}\)

\(d,\)\(\left(-\sqrt{7}\right)^2=7\)

\(e,\)\(-\left(\frac{\sqrt{3}}{4}\right)^2=-\frac{\sqrt{3}^2}{4^2}=-\frac{3}{16}\)

\(f,\)\(\sqrt{\left(-2\right)^4}=\sqrt{\left[\left(-2\right)^2\right]^2}=|-2^2|=4\)

So sánh :\(a,\) \(\sqrt{8}-1\)

\(2=3-1=\sqrt{9}-1\)

\(\Rightarrow\sqrt{8}-1< 2\)

\(b,\)\(\sqrt{\frac{16}{2}}=\sqrt{8}>\sqrt{3}\)

\(\Rightarrow\sqrt{\frac{16}{2}}>\sqrt{3}\)

11 tháng 10 2017

Ghép (11;9) ; (12;8) ; ....;(19;1) ta có giá trị mỗi cập là 20

Mà có tất cả:  18/2 = 9 cặp như thế     ( do tổng trên có 18 số hạng , 2 số hạng ghép thành một cặp)

===> Tổng trên bằng 20 x 9 =180

11 tháng 10 2017

11+12+13+.....+18+19+1+2+3+4+.....+8+9

= (11+9)+(12+8)+13+7)+....+(18+2)+(19+1)             

= [(19-1)+1.(11+9)

= 19.20

=19.10+19.10

= 380

em mới lớp 6 :D

3 tháng 7 2019

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2+2}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\sqrt{2}+1\)

3 tháng 7 2019

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

5 tháng 8 2018

\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

 \(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)

\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)

\(=-2+\sqrt{6}-3+2\sqrt{6}\)

\(=-5+3\sqrt{6}\)

5 tháng 8 2018

\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)

\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)

\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)

\(=3-\sqrt{7}-2+2\sqrt{7}\)

\(=1+\sqrt{7}\)

26 tháng 6 2015

 = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) ( vì căn 16 = 4)

=\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)  (vì căn 4 = 2 mà 2 + 2 = 4 nên tách luôn thành căn 4 )

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

Đúng nha lần sau mình giải tiếp cho

5 tháng 11 2017

(\(3\sqrt{2}\)+\(\sqrt{6}\))\(\sqrt{6-3\sqrt{2}}\)

18 tháng 10 2017

Đặt A(x)= P(x) - x2= 0

Có: A(1)=P(1) -12 =0

A(2) = P(2) -22=0

A(3)=P(3)-32=0

A(4)=P(4)-44=0

A(5)=P(5)-55=0

=> x thuộc {1;2;3;4;5} là nghiệm của A(x)

=> A(x)=(x-1)(x-2)(x-3)(x-4)(x-5)=P(x)-x2

P(x)= (x-1)(x-2)(x-3)(x-4)(x-5)+x2

P(6)=156

P(7)=769

P(8)=2584

P(9)=6801

11 tháng 11 2017

P(6)=73

6 tháng 7 2019

\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)

\(=\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3}+1}}+\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3}+1}}\)

\(=\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}+\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\frac{2+\sqrt{3}}{1-\left(\sqrt{3}-1\right)}+\frac{2-\sqrt{3}}{1+\sqrt{3}+1}\)

\(=\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}\)

\(=14\)

6 tháng 7 2019

\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+4+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\frac{\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2}{\sqrt{2}+\sqrt{3}+2}\)

\(=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)

\(=1+\sqrt{2}\)