Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : B = 202 - 192 + 182 - 172 + ..... + 22 - 12
=> B = (20 - 19)(20 + 19) + (18 - 17)(18 + 17) + ..... + (2 - 1)(2 + 1)
=> B = 39 + 35 + 31 + ..... + 3
Số số hạng của dãy trên là :
(39 - 3) : 4 + 1 = 10 (số)
Tổng B là :
(39 + 3) x 10 : 2 = 210
Vậy B = 210
Ta có : \(C=\left(15^4-1\right)\left(15^4+1\right)-3^8.5^8\)
\(\Rightarrow C=\left(15^4\right)^2-1-15^8\)
\(\Rightarrow C=15^8-1-15^8\)
=> C = -1
Vậy C = - 1
b: \(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3\left(x^2+x-6\right)\)
\(\Leftrightarrow3x^2-10x+3=3x^2+3x-18\)
=>-13x=-21
hay x=21/13
c: \(\Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)=0\)
=>x-100=0
hay x=100
\(A=2^{17}-\left(1+2+2^2+...+2^{16}\right)\)
đặt \(1+2+2^2+...+2^{16}=B\Rightarrow A=2^{17}-B\)
\(B=1+2+2^2+...+2^{16}\)
\(2B=2+2^2+2^3+...+2^{17}\)
\(B=2B-B=\left(2+2^2+...+2^{17}\right)-\left(1+2+...+2^{16}\right)\)
\(B=2^{17}-1\)
\(A=2^{17}-B=2^{17}-\left(2^{17}-1\right)=2^{17}-2^{17}+1=1\)
Vậy A=1
Bài 2: Bạn sử dụng các hằng đẳng thức đáng nhớ là ra.
a)
\(x^2+2x+1=(x+1)^2\)
b)
\(1-4x+4x^2=1^2-2.1.2x+(2x)^2=(1-2x)^2\)
c)
\(a^2+9-6a=a^2-2.3.a+3^2=(a-3)^2\)
\Leftrightarrow \left\{\begin{matrix}
\\
\end{matrix}\right.
\(B=x^{17}-12.x^{16}+12.x^{15}-12.x^{14}+...-12.x^2+12x-1\)
\(=11^{17}-\left(11+1\right)11^{16}+\left(11+1\right)11^{15}-\left(11+1\right)11^{14}+...-\left(11+1\right)11^2+\left(11+1\right)11-1\)
\(=11^{17}-11^{17}-11^{16}+11^{16}+11^{15}-11^{15}-11^{14}+...-11^3-11^2+11^2+11-1\)
\(=11-1=10\)
Vậy B = 10
mik ko chép lại đề bài nha
a) = (123)2- 12- (36. 46)
= (126-1)- (3.4)6
= 126-1-126
= -1
a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)
\(=\dfrac{100\left(100+1\right)}{2}=5050\)
d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)
\(=\dfrac{20\left(20+1\right)}{2}=210\)
e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)
\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)