K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2015

A=202202.1/1212+202202.1/2020+202202.1/3030+202202.1/4242+202202.1/5656

A=202202.(1/1212+1/2020+1/3030+1/4242+1/5656)

A=202202.5/2424

A=417/1/12

25 tháng 3 2015

A=202202.1/1212+202202.1/2020+202202.1/3030+202202.1/4242+202202.1/5656

A=202202.(1/1212+1/2020+1/3030+1/4242+1/5656)

A=202202.5/2424

A=5005/12

23 tháng 2 2017

\(=\frac{2002}{12}+\frac{2002}{20}+\frac{2002}{30}+\frac{2002}{42}+\frac{2002}{56}\)

\(=2002.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\)

\(=2002.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(=2002.\left(\frac{1}{3}-\frac{1}{8}\right)\)

\(=2002.\frac{5}{24}\)

\(=\frac{5005}{12}\)

23 tháng 2 2017

5005/12

tk mình

8 tháng 8 2016

\(A=\frac{1}{6.10}+\frac{1}{10.14}+\frac{1}{14.18}+\frac{1}{18.22}+\frac{1}{22.26}+\frac{1}{26.30}\)

  \(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{22}-\frac{1}{26}+\frac{1}{26}-\frac{1}{30}\right)\)

     \(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{30}\right)=\frac{1}{4}.\frac{2}{15}=\frac{1}{30}\)

\(B=\frac{5}{2.3}+\frac{5}{3.4}+\frac{5}{4.5}+...+\frac{5}{8.9}\)\(=5.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\)     \(=5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)

  \(=5.\left(\frac{1}{2}-\frac{1}{9}\right)=5.\frac{7}{18}=\frac{35}{18}\)

\(C=\left(\frac{7^2}{2.9}+\frac{7^2}{9.16}+....+\frac{7^2}{65.72}\right):\left(\frac{1}{3}-\frac{7}{36}\right)\)

   \(=7.\left(\frac{7}{2.9}+\frac{7}{9.16}+...+\frac{7}{65.72}\right):\frac{5}{36}\) \(=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{65}-\frac{1}{72}\right):\frac{5}{36}\)'

    \(=7.\left(\frac{1}{2}-\frac{1}{72}\right):\frac{5}{36}=7.\frac{35}{72}:\frac{5}{36}=\frac{49}{2}\)

\(D=\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}+\frac{2}{38.39.40}\)

     \(=2.\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}+\frac{1}{38.39.40}\right)\)

     \(=2.\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}+\frac{1}{38.39}-\frac{1}{39.40}\right)\)

        \(=\frac{1}{2.3}-\frac{1}{39.40}=\frac{259}{1560}\)

\(E=\frac{202202}{1212}+\frac{202202}{2020}+\frac{202202}{3030}+\frac{202202}{4242}+\frac{202202}{5656}\)

    \(=202202.\left(\frac{1}{3.4.101}+\frac{1}{4.5.101}+\frac{1}{5.6.101}+\frac{1}{6.7.101}+\frac{1}{7.8.101}\right)\)

      \(=2002.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\)

        \(=2002.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

         \(=2002.\left(\frac{1}{3}-\frac{1}{8}\right)=2002.\frac{5}{24}=\frac{5005}{12}\)

     

    

20 tháng 5 2022

ét ô ét

 

20 tháng 5 2022

Ta có:\(\dfrac{201201}{202202}\)=\(\dfrac{201}{202}\);\(\dfrac{201201201}{202202202}\)=\(\dfrac{201}{202}\)

=>\(\dfrac{201}{202}\)=\(\dfrac{201}{202}\) 

=> \(\dfrac{201201}{202202}\)=\(\dfrac{201201201}{202202202}\)

Vậy: \(\dfrac{201201}{202202}\)=\(\dfrac{201201201}{202202202}\)

                                        (quá dễ)

14 tháng 2 2020

201201/202202=201/202

201201201/202202202=201/202

Vif201/202=201/202 nên 201201/202202=201201201/202202202

Like cho me nhaok

12 tháng 3 2019

\(x-2018=\frac{201201201}{202202202}-\frac{201201}{202202}\)

\(\Rightarrow x-2018=\frac{201}{202}-\frac{201}{202}\)

\(\Rightarrow x-2018=\frac{0}{202}\)

\(\Rightarrow x-2018=0\)

\(\Rightarrow x=0+2018\)

\(\Rightarrow x=2018\)

3 tháng 2 2019

a) 3200= (32)100=9100   và      2^300=(2^3)^100=8^100

Mà 9^100>8^100

=> 3^200>2^300

b) 71^50 = (71^2)^25= 142^25   và 37^75 = (37^3)^25= 50653^25

Mà 142^25 <50653^25

=> 71^50<37^75

c) 201201/202202=201.1001/ 202.1001 = 201/202

201201201/202202202= 201. 1001001/202.1001001=201/202

=> 201201/202202=201201201/202202202.

14 tháng 7 2018

a,3^200 và 2^300

3^200=(3^2)^100=9^100

2^300=(2^3)^100=8^100

Vì 9^100>8^100=>3^200>2^300

Vậy 3^200>2^300

b, 71^50 và 37^75

71^50=(71^2)^25=5041^25

37^75=(37^3)^25=50653^25

Vì 5041^25<50653^25=> 71^50<37^75

Vậy  71^50<37^75

c, 201201/202202 và 201201201/202202202

201201201/202202202=201201/202202

=> 201201/202202=201201201/202202202

Vậy 201201/202202=201201201/202202202

14 tháng 7 2018

a)

Ta có:3200=32.100=(32)100=9100

2300=23.100=(23)100=8100

Vì 9100>8100

Nên 3200>2300

b) 

Ta có: 7150=712.25=(712)25=504125

3775=373.25=(373)25=5065325

Vì 504125<5065325

Nên 7150<3775

c)

Ta có:

201201/202202=201.1001/202.1001=201/202

201201201/202202202=201.1001001/202.1001001001= 201/202

Vì 201/202=201/202

Nên 201201/202202=201201201/202202202

10 tháng 3 2016

a. 3200 = (32)100 = 9100

2300 = (23)100 = 8100

Vì 9100 > 8100 => 3200 > 2300