Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1619 và 825
Ta có :
1619 = ( 24 )19 = 276
825 = ( 23 )25 = 275
Vì 276 > 275 Nên 1619 > 825
b) 536 và 1124
Ta có :
536 = ( 53 )12 = 12512
1124 = ( 112 )12 = 12112
Vì 12512 > 12112 Nên 536 > 1124
1.
\(M=3^0+3^1+......+3^{50}.\)
\(\Rightarrow3M=3+3^2+.......+3^{51}\)
\(\Rightarrow3M-M=\left(3+3^2+.......+3^{51}\right)-\left(3^0+3+.....+3^{50}\right)\)
\(\Rightarrow2M=3^{51}-1\)
\(\Rightarrow M=\frac{3^{51}-1}{2}\)
2.
\(a,\)Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{25}=\left(2^3\right)^5=2^{75}\)
Vì \(2^{76}>2^{75}\Rightarrow16^{19}>8^{25}\)
\(b,\)Ta có : \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
3)7/19x8/11+7/19x3/11+12/19
=7/19x(8/11+3/11)+12/19
=7/19x11/11+12/19
=7/19+12/19
=19/19=1
câu 1 : điền dấu > , < , = thích hợp
\(a,0>\left(-25\right).\left(-19\right).\left(-1\right)^{2n}\)
\(b,\left(-3\right)^4.\left(-19\right)^2=3^4.19^2.\left(-1\right)^{100}\)
\(c,\left(-2006\right).9\left(-2007\right)>\left(-2008\right).2009\)
câu 2 : sắp xếp các số theo thứ tự tăng dần
- 37 ; 25 ; 0 ; dấu giá trị tuyệt đối nha / -18 / ; _ (-19 ) ; _ / - 39 / ; _ ( + 151 )
Có : \(-37;25;0;18;19;-39;-151\)
Thứ tự tăng dần : \(-151;-39;-37;25;19;18;0\)
câu 3 tính
\(\text{a ) -8 + 19}=11\)
\(\text{b ) ( -27 ) : ( -3 )}=9\)
c )\(4-\left(-13\right)=17\)
d )\(\text{ - 9 -13 -( -24 ) + 11=13}\)
\(e,323-6\left[3-7.\left(-9\right)\right]=-73\)
\(f,\left(-3\right)^5.\left(-3\right)^3-9\)\(=6552\)
\(g,9-8.16-13.8\)
\(=9-8.\left(16-13\right)\)
\(=9-8.4\)
\(=9-32\)
\(=-23\)
\(h,\left(-3\right)^2+\left\{-54:\left[\left(-2\right)^3+7.|-2|\right].\left(-2\right)^2\right\}\)
\(=9+\left\{-54:\left[\left(-8\right)+7.2\right].4\right\}\)
\(=9+\left\{-54:\left[\left(-8\right)+14\right].4\right\}\)
\(=9+\left\{-54:6.4\right\}\)
\(=9+\left\{-7.4\right\}\)
\(=9+\left(-28\right)\)
\(=-19\)
học tốt
\(A=1^2+2^2+...+n^2\)
\(=1\left(2-1\right)+2\left(3-1\right)+...+n\left(n+1-1\right)\)
\(=\left(1.2+2.3+...+n\left(n+1\right)\right)-\left(1+2+...+n\right)\)
\(=\frac{\left[1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+n.\left(n+1\right)\left(\left(n+2\right)-\left(n-1\right)\right)\right]}{3}-\left(1+2+....+n\right)\)
\(=\frac{1.2.3-0.1.2+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)}{3}-\frac{n\left(n+1\right)}{2}\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(2B=1+1+\frac{3}{2^2}+...+\frac{19}{2^{18}}\)
\(=2+\left(\frac{1}{2^2}+\frac{2}{2^2}+\frac{1}{2^3}+\frac{3}{2^3}+...+\frac{1}{2^{18}}+\frac{18}{2^{18}}\right)\)
\(=2+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{18}}\right)+\left(\frac{2}{2^2}+\frac{3}{3^3}+...+\frac{18}{2^{18}}\right)\)
\(=\frac{3}{2}-\frac{19}{2^{19}}+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{18}}\right)+\left(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{3^3}+...+\frac{18}{2^{18}}+\frac{19}{2^{19}}\right)\)
\(\Rightarrow2B=B+\frac{3}{2}-\frac{19}{2^{19}}+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{18}}\right)\)
\(\Rightarrow B=\frac{3}{2}-\frac{19}{2^{19}}+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{18}}\right)\left(1\right)\)
Giờ tính \(C=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{18}}\)
\(\Rightarrow2C=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{17}}\)
\(\Rightarrow2C-C=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{17}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{18}}\right)\)
\(\Rightarrow C=\frac{1}{2}-\frac{1}{2^{18}}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow B=\frac{3}{2}-\frac{19}{2^{19}}+\frac{1}{2}-\frac{1}{2^{18}}\)
\(\Rightarrow B=2-\frac{19}{2^{19}}-\frac{1}{2^{18}}\)
\(A=2^0+2^17+2^2+..+2^{19}\)
\(2A=2+2^2+...+2^{20}\)
\(2A-A=2+2^2+...+2^{20}-1-2-...-2^{19}\)
\(A=2^{20}-1\)