Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+a_3+...+a_{2012}}{a_1+a_2+a_3+...+a_{2012}}=1\)(Vì \(a_1+a_2+a_3+...+a_{2012}\ne0\))
Khi đó \(a_1=a_2=a_3=...=a_{2012}\)
=> \(M=\frac{a_1^{2012}+a_2^{2012}+...+a_{2012}^{2012}}{\left(a_1+a_2+...+a_{2012}\right)^{2012}}=\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{1}{2012^{2011}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+...+a_{2012}}{a_2+a_3+...+a_1}=1\)
\(\Rightarrow a_1=a_2=a_3=...=a_{2012}\)
Khi đó M = \(\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{2012.a_1^{2012}}{2012^{2012}.a_1^{2012}}=\frac{2012}{2012^{2012}}=\frac{1}{2012^{2011}}\)
Ta có: x=2011 \(\Rightarrow\)x+1=2012
\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)
=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)
= \(x-1=2011-1=2010\)
=
=20122011-2012.20122010+2012.20122009-.......................-2012.20122-1
còn lại tự làm nhá
x^4-2012(x^3-x^2+x-1)
mà 2012=x
suy ra h(2012)=x^4-x.x^3+x.x^2-x.x+2012
=x^4-x^4+x^3-x^2+x
=x^3-x^2+x
=2012(2012^2-2012+1)
=2012(2012.2011+1)
=2012^2.2011+2012
\(M=\frac{2012}{2013}.\frac{2012^{2011}}{2013^{2011}}\)
\(N=\frac{2012}{2013}.\frac{2012^{2011}+1}{2013^{2011}+1}\)
Bạn tự so sánh tiếp nhé!
Đặt 20122012 = x ; 20132013 = y
Giả sử M < N
Ta có : \(\frac{x}{y}< \frac{x+2012}{y+2013}\)
\(\Leftrightarrow x\left(y+2013\right)< y\left(x+2012\right)\)
\(\Leftrightarrow xy+2013x< xy+2012y\)
\(\Leftrightarrow2013x< 2012y\)
\(\Leftrightarrow2013.2012^{2012}< 2012.2013^{2013}\)
\(\Leftrightarrow2012^{2011}< 2013^{2012}\)( Đúng )
=> Điều giả sử trên là đúng
=> M < N
Có \(\frac{a}{b}=\frac{c}{d}\) . Có \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\) ( Tính chất dãy tỉ số bằng nhau ) . Nên :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\left(\frac{a+b}{c+d}\right)^{2012}\left(1\right)\)
Mà \(\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\frac{a^{2012}}{b^{2012}}=\frac{c^{2012}}{d^{2012}}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(2\right)\).( T/c dãy tỉ số bằng nhau )
Từ \(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a+b}{c+d}\right)^{2012}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(đpcm\right)\)
\(A=\frac{2012^{2013}-2012}{2011}\)
\(A=2012+2012^2+2013^3+......+2012^{2012}\)
\(2012A=2012^2+2012^3+2012^{2013}\)
\(2012A-A=2012^{2013}-2012\)
\(2011A=2012^{2013}-2012=>A=\frac{2012^{2013}-2012}{2012}\)