\(A=2012+2012^2+2012^3+.......+2012^{2012}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

\(A=\frac{2012^{2013}-2012}{2011}\)

14 tháng 3 2017

\(A=2012+2012^2+2013^3+......+2012^{2012}\)

\(2012A=2012^2+2012^3+2012^{2013}\)

\(2012A-A=2012^{2013}-2012\)

\(2011A=2012^{2013}-2012=>A=\frac{2012^{2013}-2012}{2012}\)

20 tháng 11 2019

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+a_3+...+a_{2012}}{a_1+a_2+a_3+...+a_{2012}}=1\)(Vì \(a_1+a_2+a_3+...+a_{2012}\ne0\))

Khi đó \(a_1=a_2=a_3=...=a_{2012}\)

=> \(M=\frac{a_1^{2012}+a_2^{2012}+...+a_{2012}^{2012}}{\left(a_1+a_2+...+a_{2012}\right)^{2012}}=\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{1}{2012^{2011}}\)

20 tháng 11 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+...+a_{2012}}{a_2+a_3+...+a_1}=1\)

\(\Rightarrow a_1=a_2=a_3=...=a_{2012}\)

Khi đó M = \(\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{2012.a_1^{2012}}{2012^{2012}.a_1^{2012}}=\frac{2012}{2012^{2012}}=\frac{1}{2012^{2011}}\)

5 tháng 3 2018

Ta có: x=2011 \(\Rightarrow\)x+1=2012

\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)

=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)

\(x-1=2011-1=2010\)

=

5 tháng 3 2018

Thay 2012=x+1.

\(A=x^{2011}-\left(x+1\right)x^{2010}+\left(x+1\right)x^{2009}-\left(x+1\right)x^{2008}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(A=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^3-x^2+x^2+x-1\)

\(A=x-1=2011-1=2010\)

6 tháng 4 2018

=20122011-2012.20122010+2012.20122009-.......................-2012.20122-1

còn lại tự làm nhá

6 tháng 4 2018

Violympic toán 7

27 tháng 5 2017

x^4-2012(x^3-x^2+x-1)

mà 2012=x

suy ra h(2012)=x^4-x.x^3+x.x^2-x.x+2012

=x^4-x^4+x^3-x^2+x

=x^3-x^2+x

=2012(2012^2-2012+1)

=2012(2012.2011+1)

=2012^2.2011+2012

7 tháng 4 2019

\(M=\frac{2012}{2013}.\frac{2012^{2011}}{2013^{2011}}\)

\(N=\frac{2012}{2013}.\frac{2012^{2011}+1}{2013^{2011}+1}\)

Bạn tự so sánh tiếp nhé!

24 tháng 9 2020

Đặt 20122012 = x ; 20132013 = y

Giả sử M < N 

Ta có : \(\frac{x}{y}< \frac{x+2012}{y+2013}\)

\(\Leftrightarrow x\left(y+2013\right)< y\left(x+2012\right)\)

\(\Leftrightarrow xy+2013x< xy+2012y\)

\(\Leftrightarrow2013x< 2012y\)

\(\Leftrightarrow2013.2012^{2012}< 2012.2013^{2013}\)

\(\Leftrightarrow2012^{2011}< 2013^{2012}\)( Đúng )

=> Điều giả sử trên là đúng

=> M < N

Có \(\frac{a}{b}=\frac{c}{d}\) . Có \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\) ( Tính chất dãy tỉ số bằng nhau ) . Nên :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\left(\frac{a+b}{c+d}\right)^{2012}\left(1\right)\)

Mà  \(\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\frac{a^{2012}}{b^{2012}}=\frac{c^{2012}}{d^{2012}}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(2\right)\).( T/c dãy tỉ số bằng nhau )

Từ \(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a+b}{c+d}\right)^{2012}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(đpcm\right)\)