Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)
=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\)
=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)
Số hạng tử có trong K là
200 - 1 + 1 = 200 (hạng tử)
Tổng là :
(200 + 1) x 200 : 2 = 20100
Vậy K = 20100
Số hạng tử có trong K là 200 - 1 + 1 = 200 (hạng tử)
Tổng là : (200 + 1) x 200 : 2 = 20100
Vậy K = 20100
Số số hạng của K là:
(200-1):1+1=200(số)
Tổng các số hạng của K là:
(200+1)x200:2=20100
Còn Tổng P biết n = mấy mà tính
3^200 = (3^2)^100 = 9^100
2^300 = (2^3)^100 = 8^100
Vì 9^100 > 8^100
Vậy 3^200 > 2^300
2A=2+2^2+....+2^201
A = 2^201-1( lấy 2A trừ A)
=> A+1 là lũy thừa của 2
Vì A có 200 thừa số nên thừa số cuối cũng sẽ là ( 200 - 200 )
Khi đó :
A = ( 200 - 1 ) ( 200 - 2 ) ... ( 200 - 200 )
A = ( 200 - 1 ) ( 200 - 1 ) ... 0
A = 0
Vậy A = 0
A=0 nha
_______________
_____________
hok tốt