K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

\(N=\frac{-1^2}{1.2}.\frac{-2^2}{2.3}.\frac{-3^2}{3.4}....\frac{-100^2}{100.101}.\frac{-101^2}{101.102}\)
    \(=\frac{1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}....\frac{100.100}{100.101}.\frac{101.101}{101.102}\)
    \(=\frac{1.2.2.3.3....100.100.101.101}{1.2.2.3.3.4....100.101.101.102}\)
     \(=\frac{1}{102}\)

6 tháng 11 2017

kho qua chi a

11 tháng 12 2017

A=[(1+2+...+100) x (1/2 - 1/3 - 1/4 - 1/5) x (2,4x42 - 21x4,8)] / 1+1/2+1/3+...+1/100

= [(1+2+3+...+100) x (1/2 - 1/3 - 1/4-1/5) x (2,4x2x21 - 21x2x 4,8)] / 1+1/2+1/3+...+1/100

=[(1+2+3+...+100) x (1/2 - 1/3 - 1/4 - 1/5) x 0] / 1+1/2+1/3+...+1/100

=0 / 1+1/2+1/3+...+1/100 = 0

25 tháng 5 2015

Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}....\frac{100}{101}\)

Nhận xét: Nếu \(\frac{a}{b}

=1/2-1/4+1/4-1/6+...+1/98-1/100

=1/2-1/100

=49/100

3 tháng 7 2019

a, \(A=\frac{12}{3.7}+\frac{12}{7.11}+...+\frac{12}{195.199}\)

       \(=3.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{195.199}\right)\)

       \(=3.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{195}-\frac{1}{199}\right)\) 

       \(=3.\left(\frac{1}{3}-\frac{1}{199}\right)\)

       \(=3.\left(\frac{199}{597}-\frac{3}{597}\right)\)

       \(=3.\frac{196}{597}\)

       \(=\frac{196}{199}\)