Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
Sửa đề: \(x\left(x-3\right)+2y\left(2y-3\right)+4xy+19\)
a: \(x\left(x-3\right)+2y\left(2y-3\right)+4xy+19\)
\(=x^2-3x+4y^2-6y+4xy+19\)
\(=\left(x^2+4xy+4y^2\right)-3\left(x+2y\right)+19\)
\(=\left(x+2y\right)^2-3\left(x+2y\right)+19\)
\(=\left(-5\right)^2-3\cdot\left(-5\right)+19\)
=25+15+19=59
b: \(=x^3+x^2+8y^3+4y^2+2xy\left[3\left(x+2y\right)+2\right]+70\)
\(=x^3+8y^3+x^2+4y^2+2xy\cdot\left[3\cdot\left(-5\right)+2\right]+70\)
\(=\left(x+2y\right)^3-3\cdot x\cdot2y\left(x+2y\right)+\left(x+2y\right)^2-4xy+2xy\cdot\left(-13\right)+70\)
\(=\left(-5\right)^3+\left(-5\right)^2-6xy\cdot\left(-5\right)-4xy-26xy\)+70
\(=-125+25+70=-30\)
ta có:
x2+4y2-3x-6y+4xy-5
=x2+4xy+4y2-3x-6y-5
=(x+2y)2-3.(x+2y)2-5
=(x+2y)2-2.(x+2y).3/2+9/4-29/4
=(x+2y-3/2)2-29/4
thay x+2y=4 ta được:
(4-3/2)2-29/4
=25/4-29/4
=-4/4
=-1
Vậy với x+2y=4 thì
x2+4y2-3x-6y+4xy-5=-1
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(\text{x}^2+y^2-\text{x}+4y+5=\left(\text{x}^2-\text{x}+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{3}{4}=\left(\text{x}-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{3}{4}\)
\(\ge0+0+\frac{3}{4}=\frac{3}{4}\).Dâu"=" xayr ra khi:
\(\Leftrightarrow\hept{\begin{cases}\text{x}-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\text{x}=\frac{1}{2}\\y=-2\end{cases}}\)
\(13,5x5,8-8,3x4,2-5,8x8,3+4,2x13,5\)
\(=13,5x\left(5,8+4,2\right)-8,3x\left(4,2+5,8\right)\)
\(=13,5x10-8,3x10\)
\(=135-83\)
\(=52\)
\(x^2+4xy-3x+4y^2-6y\)
\(=x^2+4xy+4y^2-3x-6y\)
\(=\left(x+2y\right)^2-3\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+2y-3\right)\)
\(x^2+4xy-3x+4y^2-6y\)
\(=x^2+4xy+4y^2-3x-6y\)
\(=\left(x+2y\right)^2-3\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+2y-3\right)\)
B)(5-3x)^2=25+9x^2-30x
c)(5-x^2)(5+x^2)=25-x^4
d)(5x-1)^3=125x^3-1+15x-75x^2
e)(x^2+3)(x^4+9-3x^2)=x^6+27
f)( x-4y)(x^2+4 xy+16 y^2)= x^3-64 y^3
Mình nghĩ là \(x+2y=5\)
Ta có : \(A=x^2+4y^2-3x-6y+4xy+1\)
\(=\left(x^2+4xy+4y^2\right)-\left(3x+6y\right)+1\)
\(=\left(x+2y\right)^2-3\left(x+2y\right)+1\)
\(=5^2-3.5+1\)
\(=11\)
Chúc bạn học tốt
mk nghỉ đề phải là \(x+2y=5\) mới đúng
ta có : \(x^2+4y^2-3x-6y+4xy+1=x^2+4xy+4y^2-3x-6y+1\)
\(=\left(x+2y\right)^2-3\left(x+2y\right)+1=5^2-3.5+1=11\)