Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)
b) \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c) \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{\sqrt{8}\left|a\right|}=\dfrac{1}{-\sqrt{8}a}=\dfrac{-\sqrt{8}}{8a}\)
a: \(\sqrt{4\left(a-3\right)^2}=2\cdot\left(a-3\right)=2a-6\)
b: \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c: \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)
a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)
b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)
\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)
\(=19ab\sqrt{ab}\)
c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)
\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)
\(=\sqrt{ab}\)
d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)
\(=-4\sqrt{5a}+9\sqrt{a}\)
\(\left(a\right)\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\\ =\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{3}\left(\sqrt{2}-\sqrt{3}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}+\sqrt{6}}\\ =\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}\\ =\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}\\ =\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)
\(\left(b\right) \frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\\ =\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2\right)}{\sqrt{2}+\sqrt{3}+2}\\=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}\\ =1+\sqrt{2}\)
\(\left(c\right)\sqrt{9\left(3-a\right)^2}vớia>3\\ =\sqrt{9}.\sqrt{\left(3-a\right)^2}\\ =3.\left|3-a\right|\\ =-3\left(3-a\right)vì.a>3\\ =3a-9\)
\(\left(d\right)\sqrt{a^2.\left(a-2\right)^2}vớia< 0\\ =\sqrt{\left[a\left(a-2\right)\right]^2}\\ =\left|a\left(a-2\right)\right|=-a.\left[-\left(a-2\right)\right]=a\left(a-2\right)=a^2-2a\)
Chúc bạn học tốt !
\(\dfrac{a-4\sqrt{a}+4}{\sqrt{a}-2}=\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}-2}=\sqrt{a}-2\)
Bunyakovsky:
\(\sqrt{a+b}+\sqrt{a-b}\le\sqrt{2.2a}=2\sqrt{a}\)
a) \(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\)
\(=3\sqrt{3}\cdot4\sqrt{3}\cdot\left|1-a\right|\)
\(=36\cdot\left(a-1\right)=36a-36\)
b) \(\dfrac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot\left(a-b\right)\cdot a^2\)
\(=a^2\)
\(C=2\sqrt{a}-\sqrt{9a^3}+a^2\sqrt{\dfrac{4}{a}}+\dfrac{2}{a^2}\sqrt{25a^5}\)
\(=2\sqrt{a}-3\sqrt{a}^3+\dfrac{2\left(\sqrt{a}\right)^4}{\sqrt{a}}+\dfrac{10\left(\sqrt{a}\right)^5}{\left(\sqrt{a}\right)^4}\)
\(=2\sqrt{a}-3\sqrt{a}^3+2\sqrt{a}^3+10\sqrt{a}\)
\(=12\sqrt{a}-\sqrt{a}^3\)
a) Khi a = 6,5 thì :
\(\sqrt{a^2}\)
= \(\left|a\right|\)
=\(\left|6,5\right|\)
= 6,5
Khi a = -0,1 thì :
\(\sqrt{a^2}\)
= \(\left|a\right|\)
= \(\left|-0,1\right|\)
= \(-\left(-0,1\right)\)
= 0,1
Tuong tu nhu tren :
b) \(\sqrt{a^4}=\sqrt{\left(a^2\right)^2}\)
c)\(\sqrt{a^6}=\sqrt{\left(a^3\right)^2}\)