\(\sqrt{8-\sqrt{28}}\) + \(\sqrt{21+12\sqrt{3}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

\(a.\sqrt{8-\sqrt{28}}+\sqrt{21+12\sqrt{3}}=\sqrt{7-2\sqrt{7}+1}+\sqrt{12+2.2\sqrt{3}.3+9}=\sqrt{7}-1+2\sqrt{3}+3=2\sqrt{3}+\sqrt{7}+2\) \(b.\sqrt{5+\sqrt{24}}-\sqrt{57-40\sqrt{2}}=\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}-\sqrt{32-2.4\sqrt{2}.5+25}=\sqrt{3}+\sqrt{2}-4\sqrt{2}+5=\sqrt{3}-3\sqrt{2}+5\) \(c.\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{45+2.3\sqrt{5}.2\sqrt{2}+8}=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}=4\sqrt{2}+2\sqrt{5}\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

3 tháng 8 2016

~~~~~a)~~~~~

           \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)^2}\)

\(=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\)

\(=2.\sqrt{\frac{1}{2}}=\sqrt{2}\)

*****b)*****

(Hình như đề có cái gì đó sai sai hả bạn?)

~~~~~c)~~~~~

     \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)

\(=\left(3\sqrt{2}-2\sqrt{6}+\sqrt{6}-2\sqrt{2}\right)\sqrt{\left(\sqrt{\frac{1}{2}}+\sqrt{\frac{3}{2}}\right)^2}\)

\(=\left(\sqrt{2}-\sqrt{6}\right).\left(\sqrt{\frac{1}{2}}+\sqrt{\frac{3}{2}}\right)\)

\(=1+\sqrt{3}-\sqrt{3}-3\)

\(=-2\)

*****d)*****

     \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}+3\sqrt{5}\right)^2}\)

\(=2\sqrt{2}-\sqrt{5}-2\sqrt{2}-3\sqrt{5}\)

\(=-4\sqrt{5}\)

(Chúc bạn học tốt và tíck cho mìk vs nhé ~~~~~bạn xem lại câu b hộ mình luôn nha~~~~~!)

Bài 1:

a) Ta có: \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{45-2\cdot\sqrt{45}\cdot1+1}-\sqrt{9-2\cdot\sqrt{9}\cdot\sqrt{20}+20}\)

\(=\sqrt{\left(\sqrt{45}-1\right)^2}-\sqrt{\left(3-\sqrt{20}\right)^2}\)

\(=\left|\sqrt{45}-1\right|-\left|3-\sqrt{20}\right|\)

\(=\sqrt{45}-1-3+\sqrt{20}\)

\(=\sqrt{45}+\sqrt{20}-4\)

\(=\sqrt{5}\left(3+2\right)-4=5\sqrt{5}-4\)

b) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{8}+8}-\sqrt{45+2\cdot\sqrt{45}\cdot\sqrt{8}+8}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{8}\right)^2}-\sqrt{\left(\sqrt{45}+\sqrt{8}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{8}\right|-\left|\sqrt{45}+\sqrt{8}\right|\)

\(=\sqrt{8}-\sqrt{5}-\sqrt{45}-\sqrt{8}\)

\(=-\sqrt{5}-\sqrt{45}=-\sqrt{5}\left(1+\sqrt{9}\right)=-4\sqrt{5}\)

c) Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{7+4\sqrt{3}}\)

\(=\left(3-\sqrt{2}\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}\)

\(=\left(3-\sqrt{2}\right)\cdot\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=\left(3-\sqrt{2}\right)\left(\sqrt{3}+2\right)\)

\(=3\sqrt{3}+6-\sqrt{6}-2\sqrt{2}\)

d) Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10+2\sqrt{21}}\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{7+2\cdot\sqrt{7}\cdot\sqrt{3}+3}\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(\sqrt{7}+\sqrt{3}\right)\)

\(=\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2=7-3=4\)

5 tháng 7 2018

Mình làm luôn nhé :

\(\sqrt{45-2.3\sqrt{5}+1}-\sqrt{20-2.3.2\sqrt{5}+9}\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5-\sqrt{45+2.2.\sqrt{2}.3\sqrt{5}+8}}\left(\sqrt{3}+\sqrt{5}\right).\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{7+2.\sqrt{7}.\sqrt{3}+3}\) Tới đây dễ rồi , bạn tự nhóm HĐT là ra ::v

5 tháng 7 2018

Căn bậc hai. Căn bậc baà

5 tháng 7 2018

chữ "à" ?

7 tháng 7 2017

\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)

các câu còn lại làm tương tự nhé bạn !

19 tháng 8 2017

Hà Nam răng từ\(\sqrt{4}.....\)sang đc 2+ căn 3 đó ???

28 tháng 7 2017

a ) \(\left(1-\sqrt{5}\right)^2-\left(1+\sqrt{5}\right)^2+4\sqrt{5}=\left(1-\sqrt{5}+1+\sqrt{5}\right)\left(1-\sqrt{5}-1-\sqrt{5}\right)+4\sqrt{5}=-4\sqrt{5}+4\sqrt{5}=0\)

b ) \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}=3-\sqrt{5}+3+\sqrt{5}=6\)

c ) \(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{\left(\sqrt{8}-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{45}+\sqrt{8}\right)^2}=\sqrt{8}-\sqrt{5}+\sqrt{45}+\sqrt{8}=2\sqrt{8}-2\sqrt{5}=4\sqrt{2}-2\sqrt{5}\)

Bài 1:

a) Sửa đề: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)

Ta có: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)

\(=\sqrt{12}\cdot\sqrt{3}+3\sqrt{5}\cdot\sqrt{3}-4\sqrt{135}\cdot\sqrt{3}\)

\(=6+3\sqrt{15}-36\sqrt{5}\)

b) Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)

\(=3\sqrt{28}-5\sqrt{28}+3\sqrt{112}-2\sqrt{112}\)

\(=-2\sqrt{28}+\sqrt{112}=-\sqrt{112}+\sqrt{112}=0\)

c) Ta có: \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)

\(=2\cdot4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-3\cdot2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)

\(=8\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\sqrt{5}\sqrt{\sqrt{3}}-6\sqrt{5}\sqrt{\sqrt{3}}\)

=0

Bài 2:

a) Ta có: \(A=\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)

\(=\frac{1}{\sqrt{2}}\)

b) Ta có: \(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{\sqrt{405}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

c) Ta có: \(C=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\frac{\sqrt{72}-\sqrt{48}+\sqrt{20}}{\sqrt{162}-\sqrt{108}+\sqrt{45}}\)

\(=\frac{2\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}{3\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}=\frac{2}{3}\)