Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}=\sqrt{3,6\left(10\right)}=\sqrt{36}=6\)
a) \(\sqrt{6,8^2-3,2^2}=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}\)
=\(\sqrt{3,6.10}=\sqrt{36}=6\)
b)\(\sqrt{21,8^2-18,2^2}=\sqrt{\left(21,8-18,2\right)\left(21,8+18,2\right)}\)
=\(\sqrt{3,6.40}=\sqrt{144}=12\)
c)\(\sqrt{117,5^2-26,5^2-1440}=\sqrt{\left(117,5-26,5\right)\left(117,5+26,5\right)-1440}\)
=\(\sqrt{91.144-1440}=\sqrt{144.81}=\sqrt{144}.\sqrt{81}=108\)
d)\(\sqrt{146,5^2-109,5^2+27.256}\)=\(\sqrt{\left(146,5-109,5\right)\left(146,5+109,5\right)+27.256}\)
=\(\sqrt{37.256+\sqrt{27.256}}=\sqrt{64.256}=\sqrt{64}.\sqrt{256}=128\)
\(\frac{\sqrt{12,5}}{\sqrt{0,5}}=\frac{\sqrt{0,5}.\sqrt{25}}{\sqrt{0,5}}=\sqrt{25}=5\)
\(\frac{\sqrt{6}}{\sqrt{150}}=\frac{\sqrt{6}}{\sqrt{6}.\sqrt{25}}=\frac{1}{\sqrt{25}}=\frac{1}{5}\)
\(\sqrt{6,8^2-3,2^2}=\sqrt{\left(6,8+3,2\right)\left(6,8-3,2\right)}=\sqrt{10.3,6}=\sqrt{36}=6\)
\(\sqrt{21,8^2-18,2^2}=\sqrt{\left(21,8+18,2\right)\left(21,8-18,2\right)}=\sqrt{40.3,6}=\sqrt{144}=12\)
\(\frac{\sqrt{12,5}}{\sqrt{0,5}}=\sqrt{\frac{12,5}{0,5}}=\sqrt{25}=5\)
\(\frac{\sqrt{6}}{\sqrt{150}}=\sqrt{\frac{6}{150}}=\sqrt{\frac{1}{25}}=\frac{1}{5}\)
\(\sqrt{\left(6,8\right)^2-\left(3,2\right)^2}=\sqrt{46,24-10,24}=\sqrt{36}=6\)
\(\sqrt{\left(21,8\right)^2-\left(18,2\right)^2}=\sqrt{475,24-331,24}=\sqrt{144}=12\)
\(a,\sqrt{68^2-32^2}\)
\(=\sqrt{\left(68-32\right)\left(68+32\right)}\)
\(=\sqrt{3600}=60\)
\(b,\sqrt{37^2-12^2}\)
\(=\sqrt{\left(37-12\right)\left(37+12\right)}\)
\(=\sqrt{25.49}=5.7=35\)
\(c,\sqrt{21,8^2-18,2^2}\)
\(=\sqrt{\left(21,8+18,2\right)\left(21,8-18,2\right)}\)
\(=\sqrt{40.3,6}=12\)
1,
\(a,=\sqrt{\left(21,8-18,2\right)\left(21,8+18,2\right)}\\ =\sqrt{3,6\cdot40}\\ =\sqrt{36\cdot4}\\ =\sqrt{36}\cdot\sqrt{4}\\ =6\cdot4\\ =24\)
\(b,=10\cdot\sqrt{\left(6,5-1,6\right)\left(6,5+1,6\right)}\\ =10\cdot\sqrt{4,9\cdot8,1}\\ =10\cdot\sqrt{49\cdot0,81}\\ =10\cdot\sqrt{49}\cdot\sqrt{0,81}\\ =10\cdot7\cdot0,9\\ =63\)
2,
\(A=7+4\sqrt{3}+\sqrt{3}-1\\ =6+5\sqrt{3}\\ B=7+2\sqrt{10}-\left(11+2\sqrt{10}\right)\\ =7+2\sqrt{10}-11-2\sqrt{10}\\ =-4\)
Lời giải:
$\sqrt{6,8^2-3,2^2}=\sqrt{(6,8-3,2)(6,8+3,2)}=\sqrt{3,6.10}=\sqrt{36}=6$
Akai Haruma Em xin lỗi nhưng có thể giúp e bài này đc k ạ
Câu hỏi của Hàn Thất - Toán lớp 8 | Học trực tuyến
Bài 1: Bạn đã post 1 lần
Bài 2:
\(C=\sqrt{(x-3)-2\sqrt{x-3}+1}-\sqrt{(x-3)-4\sqrt{x-3}+4}\)
\(=\sqrt{(\sqrt{x-3}-1)^2}-\sqrt{(\sqrt{x-3}-2)^2}\)
\(=|\sqrt{x-3}-1|-|\sqrt{x-3}-2|\)
Áp dụng BĐT dạng $|a|-|b|\leq |a-b|(*)$ thì:
$C\leq |\sqrt{x-3}-1-(\sqrt{x-3}-2)|$ hay $C\leq 1$
Vậy $C_{\max}=1$
Mặt khác, vẫn áp dụng BĐT $(*)$:
\(|\sqrt{x-3}-1|=|(\sqrt{x-3}-2-(-1)|\geq |\sqrt{x-3}-2|-|-1|\)
\(=|\sqrt{x-3}-2|-1\Rightarrow C\geq -1\)
Vậy $C_{\min}=-1$
Câu a, bạn coi lại đề xem $a^2=6-3\sqrt{3}$ hay $a=6-3\sqrt{3}$???
b.
\(B=\frac{\sqrt{(x-2)+(x+2)+2\sqrt{(x-2)(x+2)}}}{\sqrt{x^2-4}+x+2}\)
\(=\frac{\sqrt{(\sqrt{x-2}+\sqrt{x+2})^2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x+2}(\sqrt{x-2}+\sqrt{x+2})}=\frac{1}{\sqrt{x+2}}\)
\(=\frac{1}{\sqrt{3+\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{(\sqrt{5}+1)^2}}=\frac{\sqrt{2}}{\sqrt{5}+1}\)
a) \(\sqrt{6,8^2-3.2^2}\)
\(=\sqrt{\left(6,8+3,2\right).\left(6,8-3,2\right)}\)
\(=\sqrt{3,6.10}=\sqrt{36}=6\)
b) \(\sqrt{21,8^2-18,2^2}\)
\(=\sqrt{\left(21,8-18,2\right).\left(21,8+18,2\right)}\)
\(=\sqrt{3,6.40}=\sqrt{4.36}=2.6=12\)