\(\sqrt{1}+\sqrt{4}+\sqrt{8}+...+\sqrt{81}+\sqrt{100}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 3 2019

Lời giải:

\(A=\sqrt{1}+\sqrt{4}+\sqrt{9}+...+\sqrt{81}+\sqrt{100}\)

\(=\sqrt{1^2}+\sqrt{2^2}+\sqrt{3^2}+...+\sqrt{9^2}+\sqrt{10^2}\)

\(=1+2+3+....+9+10=\frac{10(10+1)}{2}=55\)

26 tháng 6 2017

\(\sqrt{1}\)=1

\(\sqrt{4}\)=2

....

\(\sqrt{100}\)=10

=> A= 1+2+...+10=55

26 tháng 6 2017

Ta có: A =\(\sqrt{1}+\sqrt{4}+\sqrt{9}+...+\sqrt{81}+\sqrt{100}\)

             = \(\sqrt{1^2}+\sqrt{2^2}+\sqrt{3^2}+...+\sqrt{9^2}+\sqrt{10^2}\)

             = |1|  + |2| + |3|  + ...+ |9| + |10|

             = 1 + 2 + 3 + 4 +...+ 9 + 10

             = 55

13 tháng 8 2017

A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\) 

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

13 tháng 8 2020

bn có biết làm bài 1 ko lm hộ mk vs ạ

13 tháng 8 2020

thanks bn

31 tháng 7 2020

2.Ta có : \(4\sqrt{3+2\sqrt{2}}-\sqrt{56\sqrt{2}+81}\)

\(=4\sqrt{2+2\sqrt{2}+1}-\sqrt{56\sqrt{2}+81}\)

\(=4\sqrt{2}+4-\sqrt{56\sqrt{2}+81}\)

\(=4\sqrt{2}+4-\sqrt{7^2+2.4\sqrt{2}.7+\left(4\sqrt{2}\right)^2}\)

\(=4\sqrt{2}+4-7-4\sqrt{2}=4-7=-3\)

3.Ta có : \(\frac{x-49}{\sqrt{x}-7}\)

\(=\frac{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}{\sqrt{x}-7}=\sqrt{x}+7\)

4.Ta có : \(\sqrt{x+2\sqrt{x+1}}\)

\(=\sqrt{x+1+2\sqrt{x+1}+1-1}\)

\(=\sqrt{\left(\sqrt{x+1}+1\right)^2-1}\)

5.Ta có : \(\sqrt{x-1-2\sqrt{x-2}}\)

\(=\sqrt{x-2-2\sqrt{x-2}+1}\)

\(=\sqrt{\left(\sqrt{x-2}-1\right)^2}=\left|\sqrt{x-2}-1\right|\)

2 tháng 9 2019

a, \(\sqrt{4x^2+20x+25}\) + \(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)

⇔ 4x2 + 20x + 25 + \(2\sqrt{\left(4x^2+20x+25\right)\left(x^2-8x+16\right)}\) = x2 + 18x + 81

⇔ 4x2 + 20x + 25 - x2 - 18x - 81 + \(2\sqrt{\left(2x+5\right)^2.\left(x-4\right)^2}\) = 0

⇔ 3x2 + 2x - 56 + 2.(2x + 5) . (x - 4) = 0

⇔ 3x2 + 2x - 56 + (4x + 10) . (x - 4) = 0

⇔ 3x2 + 2x - 56 + 4x2 - 16x + 10x - 40 = 0

⇔ 7x2 - 4x - 96 = 0

x1 = 4 ( nhận )

x2 = \(\frac{-24}{7}\) ( nhận )

Vậy: S = {4; \(\frac{-24}{7}\)}

18 tháng 7 2018

a) \(\sqrt{200}+2\sqrt{108}-\sqrt{98}+\frac{1}{3}\sqrt{\frac{81}{3}}-3\sqrt{75}\)

\(=10\sqrt{2}+12\sqrt{3}-7\sqrt{2}+\sqrt{3}-15\sqrt{3}\)

\(=3\sqrt{2}-2\sqrt{3}\)

b)\(\left(21\sqrt{\frac{1}{7}}+\frac{1}{2}\sqrt{112}-\frac{14}{3}\sqrt{\frac{9}{7}}+7\right):3\sqrt{7}\)

\(=\left(3\sqrt{7}+2\sqrt{7}-2\sqrt{7}+7\right):3\sqrt{7}\)

\(=\frac{\sqrt{7}\left(3+\sqrt{7}\right)}{3\sqrt{7}}=\frac{\sqrt{7}+3}{3}\)

c)\(\left(\sqrt{27}-\sqrt{125}+\sqrt{45}+\sqrt{12}\right)\left(\sqrt{75}+\sqrt{20}\right)\)

\(=\left(3\sqrt{3}-5\sqrt{5}+3\sqrt{5}+2\sqrt{3}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)

\(=\left(5\sqrt{3}-2\sqrt{5}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)

\(=75-20=55\)

d)\(\left(\frac{3}{\sqrt{6}-3}-\frac{3}{\sqrt{6}+3}\right).\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\frac{\sqrt{28-6\sqrt{3}}}{1}\)

\(=\frac{3\left(\sqrt{6}+3\right)-3\left(\sqrt{6}-3\right)}{-3}.\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\sqrt{\left(3\sqrt{3}-1\right)^2}\)

\(=\frac{-6\left(3-\sqrt{3}\right)}{2-2\sqrt{3}}-\left(3\sqrt{3}-1\right)\left(do3\sqrt{3}>1\right)\)

\(=\frac{6\sqrt{3}-18}{2-2\sqrt{3}}-\frac{8\sqrt{3}-20}{2-2\sqrt{3}}\)

\(=\frac{6\sqrt{3}-18-8\sqrt{3}+20}{2-2\sqrt{3}}=\frac{2-2\sqrt{3}}{2-2\sqrt{3}}=1\)

2 tháng 10 2017

cho x=3535+3641220357 .38+35

y=39233+42 +29394281 

Tính xy

20 tháng 8 2016

a)

\(\sqrt{2}.x-\sqrt{98}=0\)

\(\Leftrightarrow x-\sqrt{49}=0\)

\(\Leftrightarrow x-7=0\)

<=> x = 7

b)

\(\sqrt{2x}=\sqrt{8}\)

\(\Leftrightarrow\sqrt{x}=\sqrt{4}\)

<=> x = 4

c)

\(\sqrt{5}.x^2=\sqrt{20}\)

\(\Rightarrow x^2=\sqrt{4}\)

\(\Rightarrow x^2=2\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)

d)

\(2x^2-\sqrt{100}=0\)

\(\Leftrightarrow2x^2=10\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)

20 tháng 8 2016

a/ \(\sqrt{2}x-\sqrt{98}=0\Leftrightarrow\sqrt{2}x=\sqrt{98}\Leftrightarrow x=7\)

b/ \(\sqrt{2x}=\sqrt{8}\) (ĐKXĐ : \(x\ge0\))

\(\Leftrightarrow2x=8\Leftrightarrow x=4\)

c/ \(\sqrt{5}x^2=\sqrt{20}\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

d/ \(2x^2-\sqrt{100}=0\Leftrightarrow2x^2=10\Leftrightarrow x^2=5\Leftrightarrow x=\pm\sqrt{5}\)