Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2!-1!= 1!.( 2-1)= 1!
3!-2!= 2!.( 3-1)= 2.2!
4!-3!= 3!.( 4-1)= 3.3!
....
⇒ ( n+1)!-n!= n!.( n+1-1)= n.n!
Do đó tổng S= 1!+2.2!+3.3!+....+n.n!
= 2!-1!+3!-2!+4!-3!+...+( n+1)!-n!
= ( n+1)!-1!
học tốt
Ta có:
2!-1!= 1!.( 2-1)= 1!
3!-2!= 2!.( 3-1)= 2.2!
4!-3!= 3!.( 4-1)= 3.3!
....
⇒ ( n+1)!-n!= n!.( n+1-1)= n.n!
Do đó tổng:
S= 1!+2.2!+3.3!+....+n.n!
S= 2!-1!+3!-2!+4!-3!+...+( n+1)!-n!
S= ( n+1)!-1!
Ta có: 1! = 1 nên 1 + 1! = 2 = 1.2 = 2!
2! + 2.2! = 2!.( 1 + 2 ) = 2! . 3 = 3!
3! + 3.3! = 3! . 4 ;...............
Tương tự như vậy cho tới 100.100!
100! + 100.100! = 100! . 101 = 101!
# Kiseki no enzeru #
\(\frac{2^35^27^23^7}{49.5^3.3^6.11}\)
= \(\frac{2^31^21^21^7}{7.1^3.1^6.11}\)
= \(\frac{8}{77}\)
k * k! = (k+1-1) * k! = (k+1)*k! - 1*k! = (k+1)! - k!
1*1! + 2*2! + 3*3! + . . . + (n-1)*(n-1)! + n*n!
= (2! - 1!) + (3! - 2!) + (4! - 3!) + ... + (n! - (n-1)!) + ((n+1)! - n!)
= -1! + (n+1)!
= (n+1)! - 1
kết quả là (n+1)! - n!