Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm y biết \(\left(\frac{2}{11x13}+\frac{2}{13x15}+\frac{2}{15x17}+\frac{2}{17x19}\right)+462-y=19\)
ta lấy : (1/11-1/13+1/13-1/15+...+1/19)x462-y=19
(1/11-1/19)x462-y=19
32/209x462-y=19
70,73-y=19
y=70,73-19=51,73
đúng thì k cho mình nhé , ko đúng cũng ko sao ^^
1. \(\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+\frac{2}{17.19}+\frac{2}{19.21}\right)\times462-x=19\)
\(\left(\frac{13-11}{11.13}+\frac{15-13}{13.15}+\frac{17-15}{15.17}+\frac{19-17}{17.19}+\frac{21-19}{19.21}\right)\times462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\times462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{21}\right)\times462-x=19\)
\(\frac{10}{231}\times462-x=19\)
\(20-x=19\)
\(x=20-19\)
\(x=1\)
2.b \(187-[[497-(8\times x+11)\div x]\div3-78]=150\)
\(187-[[497-(\frac{8\times x}{x}+\frac{11}{x})]:3-78]=150\)
\(187-[(497-8-\frac{11}{x}):3-78]=150\)
\(187-[(489-\frac{11}{x}):3-78]=150\)
\(187-[\frac{489}{3}-\frac{33}{x}-78]=150\)
\(187-[163-\frac{33}{x}-78]=150\)
\(187-85+\frac{33}{x}=150\)
\(102+\frac{33}{x}=150\)
\(\frac{33}{x}=150-102\)
\(\frac{33}{x}=48\)
\(x=\frac{48}{33}=\frac{16}{11}\)
\(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right).462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{13}+...+\frac{1}{19}-\frac{1}{21}\right)\cdot462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{21}\right)\cdot462-x=19\)
\(\frac{10}{231}.462-x=19\)
\(20-x=19\)
\(x=20-19\)
\(x=1\)
Đề abfi sai. Chỗ đó là 19, k phải 29
Bạn biết tính chất này không?
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
Sử dụng tính chất đó thì được:
\(\left(\frac{2}{11}-\frac{2}{13}+\frac{2}{13}-\frac{2}{15}+...+\frac{2}{19}-\frac{2}{21}\right)\)x 462 - x =19
\(\left(\frac{2}{11}-\frac{2}{21}\right)\cdot462-x=19\)
\(\frac{924}{11}-\frac{924}{21}-x=19\)
84 - 44 - x =19
40 - x = 19
x = 40 - 19
x = 21
Nhớ tk cho mình nếu đúng nhé
\(A=\frac{1}{3}-\frac{1}{17}=\frac{14}{51}\)
cách làm thì tự biết
trên mạng đầy
kết quả đúng phải là 7/51 chứ bn
mk cần cách trình bày thôi
câu trả lời của bn hơi lạnh nhạt tí ^.^
Tìm x:
\(\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+.....+\frac{1}{19x21}\right).x=\frac{9}{7}\)
\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left(\frac{1}{2}.\frac{2}{7}\right)x=\frac{9}{7}\)
\(\frac{1}{7}.x=\frac{9}{7}\)
\(x=\frac{9}{7}\div\frac{1}{7}\)
\(x=9\)
Vậy ...
\(=\frac{7-5}{5x7}+\frac{9-7}{7x9}+\frac{11-9}{9x11}+...+\frac{15-13}{13x15}=\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{13}-\frac{1}{15}=\frac{1}{5}-\frac{1}{15}=\frac{2}{15}\)
\(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+....-\frac{1}{15}\)
\(=\frac{1}{5}-\frac{1}{15}=\frac{2}{15}\)
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
\(A=\frac{1}{11.13}+\frac{1}{13.15}+..+\frac{1}{19.21}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+..+\frac{1}{19}-\frac{1}{21}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{21}\right)\)
\(A=\frac{1}{11\cdot13}+\frac{1}{13\cdot15}+...+\frac{1}{19\cdot21}\)
\(2A=\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{19\cdot21}\)
\(2A=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\)
\(2A=\frac{1}{11}-\frac{1}{21}+0+...+0\)
\(2A=\frac{10}{231}\)
\(A=\frac{5}{231}\)