Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{\left(\dfrac{2}{3}\right)^3\cdot\left(-\dfrac{3}{4}\right)^2\cdot\left(-1\right)^{2011}}{\left(\dfrac{2}{5}\right)^2\cdot\left(-\dfrac{5}{12}\right)^3}\)
\(B=\dfrac{\dfrac{2}{3}\cdot\left(-\dfrac{3}{4}\cdot\dfrac{2}{3}\right)^2\cdot\left(-1\right)}{-\dfrac{5}{12}\left(-\dfrac{5}{12}\cdot\dfrac{2}{5}\right)^2}\)
\(B=\dfrac{-\dfrac{2}{3}\cdot\dfrac{1}{4}}{-\dfrac{5}{12}\cdot\dfrac{1}{36}}=-\dfrac{1}{6}:-\dfrac{5}{432}\)
\(B=\dfrac{72}{5}\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
Thực hiện các phép tính:
a) 9,6.212−(2.125−1512):149,6.212−(2.125−1512):14
b) 518−1,456:725+4,5.45518−1,456:725+4,5.45;
c) (12+0,8−113).(2,3+4725−1,28)(12+0,8−113).(2,3+4725−1,28)
d) (−5).12:[(−14)+12:(−2)]+113(−5).12:[(−14)+12:(−2)]+113.
Hướng dẫn làm bài:
a) 9,6.212−(2.125−1512):149,6.212−(2.125−1512):14
=9,6.52−(250−1712)×4=9,6.52−(250−1712)×4
=4,8.5−(1000−173)=4,8.5−(1000−173)
=24−1000+173=24−1000+173
=−976+173=−976+173
=−97013=−97013
b) 518−1,456:725+4,5.45518−1,456:725+4,5.45;
=518−1,456×257+92.45=518−1,456×257+92.45
=518−0,208×25+185=518−0,208×25+185
=518−5,2+185=518−5,2+185
=25−468+32490=25−468+32490
=−11990=−11990
c) (12+0,8−113).(2,3+4725−1,28)(12+0,8−113).(2,3+4725−1,28)
=(12+45−43).(2310+10725−3225)=(12+45−43).(2310+10725−3225)
=(15+24−4030).(2310+10725−3225)=(15+24−4030).(2310+10725−3225)
=(15+24−4030).(115+214−6450)=(15+24−4030).(115+214−6450)
=−130.26550=−130.26550
=−53300=−53300
d) (−5).12:[(−14)+12:(−2)]+113(−5).12:[(−14)+12:(−2)]+113
=−60:[14+12×(−12)]+1.13=−60:[14+12×(−12)]+1.13
=−60:[−14−14]+113=−60:[−14−14]+113
=−60:(12)+113=−60:(12)+113
=120+113=120+113
=12113
a) \(9,6.2\dfrac{1}{2}-\left(2.125-1\dfrac{5}{12}\right):\dfrac{1}{4}\)
\(=9,6.\dfrac{5}{2}-\left(250-\dfrac{17}{12}\right).4\)
\(=4,8.5-\left(1000-\dfrac{17}{3}\right)\)
\(=24-1000+\dfrac{17}{3}\)
\(=-976+\dfrac{17}{3}=-970\dfrac{1}{3}\)
b) \(\dfrac{5}{18}-1,456:\dfrac{7}{25}+4,5.\dfrac{4}{5}\)
\(=\dfrac{5}{18}-1,456.\dfrac{25}{7}+\dfrac{9}{2}.\dfrac{4}{5}\)
\(=\dfrac{5}{18}-0,208.25+\dfrac{18}{5}\)
\(=\dfrac{5}{18}-5,2+\dfrac{18}{5}\)
\(=-\dfrac{119}{90}\)
c) \(\left(\dfrac{1}{2}+0,8-1\dfrac{1}{3}\right).\left(2,3+4\dfrac{7}{25}-1,28\right)\)
\(=\left(\dfrac{1}{2}+\dfrac{4}{5}-\dfrac{4}{3}\right).\left(\dfrac{23}{10}+\dfrac{107}{25}-\dfrac{32}{25}\right)\)
\(=-\dfrac{1}{30}.\dfrac{265}{50}=-\dfrac{53}{300}\)
d) \(\left(-5\right).12:\left[\left(-\dfrac{1}{4}\right)+\dfrac{1}{2}:\left(-2\right)\right]+1\dfrac{1}{3}\)
\(=-60:\left[\dfrac{1}{4}+\dfrac{1}{2}.\dfrac{-1}{2}\right]+1.\dfrac{1}{3}\)
\(=-60:\left[-\dfrac{1}{4}-\dfrac{1}{4}\right]+1\dfrac{1}{3}\)
\(=-60:\left(\dfrac{1}{2}\right)+1\dfrac{1}{3}\)
\(=121\dfrac{1}{3}\)
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)
= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)
= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)
= \(\dfrac{215}{1}=215\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)
= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)
= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)
= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)
= \(\dfrac{300}{2}=150\)
Số số hạng của B là 1914(là 1 số chẵn)
\(\Rightarrow B=\left(1-\dfrac{1}{2013^2}\right)\left(1-\dfrac{1}{2012^2}\right)\left(1-\dfrac{1}{2011^2}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\dfrac{1}{100^2}\right)\)
\(B=\dfrac{2013^2-1}{2013^2}\cdot\dfrac{2012^2-1}{2012^2}\cdot\dfrac{2011^2-1}{2011^2}\cdot\cdot\cdot\cdot\cdot\dfrac{100^2-1}{100^2}\)
\(B=\dfrac{2014\cdot2012\cdot2013\cdot2011\cdot2012\cdot2010\cdot...\cdot101\cdot99}{2013\cdot2013\cdot2012\cdot2012\cdot2011\cdot2011\cdot...\cdot100\cdot100}\)
\(B=\dfrac{2014\cdot99}{2013\cdot100}=\dfrac{3021}{3050}\)
\(A=\left(1-\dfrac{1}{1+2}\right).\left(1-\dfrac{1}{1+2+3}\right)....\left(1-\dfrac{1}{1+2+...+2010}\right)\left(1-\dfrac{1}{1+2+...+2011}\right)\)\(A=A_1.A_2...A_n\) (n = [2,... 2011])
\(A_n=1-\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=1-\dfrac{2}{n\left(n+1\right)}=\dfrac{n.\left(n+1\right)-2}{n.\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\) \(A_1=\dfrac{\left(2-1\right)\left(2+2\right)}{2\left(2+1\right)}=\dfrac{1.4}{2.3}\)
\(A_2=\dfrac{\left(3-1\right)\left(3+2\right)}{3\left(3+1\right)}=\dfrac{2.5}{3.4}\)
\(A_3=\dfrac{\left(4-1\right)\left(4+2\right)}{4\left(4+1\right)}=\dfrac{3.6}{4.5}\)
..
\(A=\dfrac{1.4.2.5.3.6.4.7...\left(2010\right).\left(2013\right)}{2.3.3.4.4.5...\left(2011\right)\left(2012\right)}=\dfrac{\left(1.2....2010\right)\left(4.5.6.2013\right)}{\left(2.3.4...2011\right)\left(3.4.5....2012\right)}\)
\(A=\dfrac{\left(1\right)\left(2013\right)}{\left(2011\right).\left(3\right)}=\dfrac{2013}{3.2011}=\dfrac{671}{2011}\)