Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-1998}{1999}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{1998}{1999}=\dfrac{1}{1999}\)
\(B=\dfrac{\left(\dfrac{2}{3}\right)^3\cdot\left(-\dfrac{3}{4}\right)^2\cdot\left(-1\right)^{2011}}{\left(\dfrac{2}{5}\right)^2\cdot\left(-\dfrac{5}{12}\right)^3}\)
\(B=\dfrac{\dfrac{2}{3}\cdot\left(-\dfrac{3}{4}\cdot\dfrac{2}{3}\right)^2\cdot\left(-1\right)}{-\dfrac{5}{12}\left(-\dfrac{5}{12}\cdot\dfrac{2}{5}\right)^2}\)
\(B=\dfrac{-\dfrac{2}{3}\cdot\dfrac{1}{4}}{-\dfrac{5}{12}\cdot\dfrac{1}{36}}=-\dfrac{1}{6}:-\dfrac{5}{432}\)
\(B=\dfrac{72}{5}\)
\(...A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)....\left(-\dfrac{1998}{1999}\right).\)
Số dấu trừ là : \(\left(1998-1\right):1+1=1998\) là số chẵn
\(\Rightarrow A=\dfrac{1.2.3...1998}{2.3.4...1999}\)
\(\Rightarrow A=\dfrac{1}{1999}\)
gợi ý nè
tính hết mấy cái hiệu trong ngoặc rồi nhân lại
vì kết thúc ở số 1999
nên sẽ có 1999 dấu -
nên kq là âm
nhân ra rồi triệt tiêu đi
Số số hạng của B là 1914(là 1 số chẵn)
\(\Rightarrow B=\left(1-\dfrac{1}{2013^2}\right)\left(1-\dfrac{1}{2012^2}\right)\left(1-\dfrac{1}{2011^2}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\dfrac{1}{100^2}\right)\)
\(B=\dfrac{2013^2-1}{2013^2}\cdot\dfrac{2012^2-1}{2012^2}\cdot\dfrac{2011^2-1}{2011^2}\cdot\cdot\cdot\cdot\cdot\dfrac{100^2-1}{100^2}\)
\(B=\dfrac{2014\cdot2012\cdot2013\cdot2011\cdot2012\cdot2010\cdot...\cdot101\cdot99}{2013\cdot2013\cdot2012\cdot2012\cdot2011\cdot2011\cdot...\cdot100\cdot100}\)
\(B=\dfrac{2014\cdot99}{2013\cdot100}=\dfrac{3021}{3050}\)
\(A=\left(1-\dfrac{1}{1+2}\right).\left(1-\dfrac{1}{1+2+3}\right)....\left(1-\dfrac{1}{1+2+...+2010}\right)\left(1-\dfrac{1}{1+2+...+2011}\right)\)\(A=A_1.A_2...A_n\) (n = [2,... 2011])
\(A_n=1-\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=1-\dfrac{2}{n\left(n+1\right)}=\dfrac{n.\left(n+1\right)-2}{n.\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\) \(A_1=\dfrac{\left(2-1\right)\left(2+2\right)}{2\left(2+1\right)}=\dfrac{1.4}{2.3}\)
\(A_2=\dfrac{\left(3-1\right)\left(3+2\right)}{3\left(3+1\right)}=\dfrac{2.5}{3.4}\)
\(A_3=\dfrac{\left(4-1\right)\left(4+2\right)}{4\left(4+1\right)}=\dfrac{3.6}{4.5}\)
..
\(A=\dfrac{1.4.2.5.3.6.4.7...\left(2010\right).\left(2013\right)}{2.3.3.4.4.5...\left(2011\right)\left(2012\right)}=\dfrac{\left(1.2....2010\right)\left(4.5.6.2013\right)}{\left(2.3.4...2011\right)\left(3.4.5....2012\right)}\)
\(A=\dfrac{\left(1\right)\left(2013\right)}{\left(2011\right).\left(3\right)}=\dfrac{2013}{3.2011}=\dfrac{671}{2011}\)
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right)\left(\dfrac{1}{2016}-1\right)\left(\dfrac{1}{2017}-1\right)\\ A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)...\left(-\dfrac{2014}{2015}\right)\left(-\dfrac{2015}{2016}\right)\left(-\dfrac{2016}{2017}\right)\\ A=\dfrac{1.2.3.4...2014.2015.2016}{2.3.4...2015.2016.2017}=\dfrac{1}{2017}\)
\(B=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right)\left(-1\dfrac{1}{2016}\right)\left(-1\dfrac{1}{2017}\right)\\ B=\left(-\dfrac{3}{2}\right)\left(-\dfrac{4}{3}\right)\left(-\dfrac{5}{4}\right)...\left(-\dfrac{2016}{2015}\right)\left(-\dfrac{2017}{2016}\right)\left(-\dfrac{2018}{2017}\right)\\ B=\dfrac{3.4.5...2016.2017.2018}{2.3.4...2015.2016.2017}=\dfrac{2018}{2}=1009\)
\(M=A.B=\dfrac{1}{2017}.1009=\dfrac{1009}{2017}\)
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)
= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)
= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)
= \(\dfrac{215}{1}=215\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)
= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)
= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)
= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)
= \(\dfrac{300}{2}=150\)