Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right).200x=4036\)
\(\Leftrightarrow\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}.200x=4036\)
\(\Leftrightarrow\frac{1.2.3...99}{2.3.4....100}.200x=4036\)
\(\Leftrightarrow\frac{1}{100}.200x=4036\)
\(\Leftrightarrow\frac{1}{100}.200x=4036\)
\(\Leftrightarrow2x=4036\)
\(\Leftrightarrow x=4036:2=2018\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{100}\right)\times200\times x=4036\)
=> \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}\times200\times x=4036\)
=> \(\frac{1\times2\times...\times99}{2\times3\times...\times100}\times200\times x=4036\)
\(\Rightarrow\frac{1}{100}\times200\times x=4036\)
\(\Rightarrow2\times x=4036\)
=> x = 2018
= 3/2 + 4/3 + 5/4 ................................ 100/99
= 100/2 = 50
\(A=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{101}{100}\)
\(A=\frac{101}{2}\) (Vì các số còn lại đã bị gạch bỏ)
Ta có:
\(A=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{3999.4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{3999}-\frac{1}{4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{3}+...+\frac{1}{3999}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}=1\)
Ta lại có:
\(B=\frac{\left(17+1\right)\left(\frac{17}{2}+1\right)...\left(\frac{17}{19}+1\right)}{\left(1+\frac{19}{17}\right)\left(1+\frac{19}{16}\right)...\left(1+19\right)}\)
\(=\frac{\frac{18}{1}.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{\frac{36}{17}.\frac{35}{16}.\frac{34}{15}...\frac{20}{1}}\)
\(=\frac{1.2.3...36}{1.2.3...36}=1\)
Từ đây ta suy ra được
\(A-B=1-1=0\)
1 \(A=\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times.........\times\left(1+\frac{1}{2016}\right)\times\left(1+\frac{1}{2017}\right)\)
\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times......\times\frac{2016}{2017}\times\frac{2018}{2017}\)
\(A=\frac{2018}{2}=1009\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{43.45}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......+\frac{1}{43}-\frac{1}{45}\)
\(B=\frac{1}{3}-\frac{1}{45}\)
\(B=\frac{14}{45}\)
2 \(\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{2018}\times\frac{2017}{47}\)
\(=\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{47}\times\frac{2017}{2018}\)
\(=\frac{2017}{2018}\times\left(\frac{23}{47}+\frac{24}{47}\right)\)
\(=\frac{2017}{2018}\times1\)
=\(\frac{2017}{2018}\)
bạn nào xem giải thế có đúng ko
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{1\cdot2\cdot3\cdot4}{2\cdot3\cdot4\cdot5}=\frac{1}{5}\)
=4/5x5/6x...x99/100
=4x5x6x...x99/5x6x7x...x100
=4/100=1/25
\(a,\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\)
\(b,\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\)
\(=\frac{1\times2\times3}{2\times3\times4}=\frac{1}{4}\)
\(\Rightarrow A=\frac{3}{2}.\frac{4}{3}......\frac{101}{100}\)
\(\Rightarrow A=\frac{3.4..........101}{2.3.........100}\)
\(\Rightarrow A=\frac{101}{2}\)
\(A=\left(1+\frac{1}{2}\right)\left(1+\frac{2}{3}\right)...\left(1+\frac{1}{100}\right)\)
\(\Rightarrow A=\frac{3}{2}.\frac{4}{3}...\frac{101}{100}\)
\(\Rightarrow A=\frac{101}{2}\)