Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phải là \(B=\frac{0,5-\frac{3}{17}+\frac{3}{37}}{\frac{5}{6}-\frac{5}{7}+\frac{5}{37}}+\frac{0,5-\frac{1}{3}+\frac{1}{4}-0,2}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-3,5}\) chứ nhỉ?
Nếu đúng thì phân tích như sau
\(\Leftrightarrow B=\frac{\frac{3}{6}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{6}-\frac{5}{7}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(B=\frac{3\left(\frac{1}{6}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{6}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(B=\frac{3}{5}+\frac{1}{7}=\frac{16}{35}\)
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)
\(=0+1=1\)
a)\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\frac{1}{120}.120+x:\frac{1}{3}=-4\)
\(\Rightarrow1+x:\frac{1}{3}=-4\)
\(\Rightarrow x:\frac{1}{3}=-4-1=-5\)
\(\Rightarrow x=-5.\frac{1}{3}=\frac{-5}{3}\)
b)\(1\frac{3}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)
\(\Rightarrow\frac{8}{5}+\left[\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right].x=\frac{16}{5}\)
\(\Rightarrow\frac{8}{5}+\frac{2}{5}.x=\frac{16}{5}\)
\(\Rightarrow\frac{2}{5}.x=\frac{16}{5}-\frac{8}{5}=\frac{8}{5}\)
\(\Rightarrow x=\frac{8}{5}:\frac{2}{5}=\frac{8}{5}.\frac{5}{2}=\frac{8}{2}=4\)
\(\Rightarrow x=4\)
P/s : Đề của bạn sai nên mik đã sửa lại rồi
Ta có :
\(B=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
\(\Rightarrow B=-\frac{6}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{1\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}:\frac{4\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
\(\Rightarrow B=-\frac{6}{5}.4:\frac{4}{5}\)
\(\Rightarrow B=-\frac{24}{5}:\frac{4}{5}\)
\(\Rightarrow B=-\frac{24}{5}.\frac{5}{4}\)
\(\Rightarrow B=-6\)
Vậy \(B=-6\)
~ Ủng hộ nhé
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{1.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{-1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}\)
\(=\frac{16}{35}\)
\(A=\frac{3.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(A=\frac{3}{5}+\frac{1}{7}=\frac{21}{35}+\frac{5}{35}=\frac{26}{35}\)