\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21+26}+...+\frac{5}{61.66}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)

\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)

\(=\frac{1}{11}-\frac{1}{66}\)

\(=\frac{5}{66}\)

Vậy \(A=\frac{5}{66}\)

19 tháng 2 2017

\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)

\(=5.\left(\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{61.66}\right)\)

\(=5.\frac{1}{4}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{24}+...+\frac{1}{61}-\frac{1}{66}\right)\)

\(=\frac{5}{4}.\left(\frac{1}{11}-\frac{1}{66}\right)\)

\(=\frac{5}{4}.\frac{5}{66}\)

\(=\frac{25}{264}\)

1 tháng 12 2019

a, \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)

  \(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)

 \(A=\frac{1}{11}-\frac{1}{66}\)

\(A=\frac{5}{66}\)

b, \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

\(B=1-\frac{1}{7}\)

\(B=\frac{6}{7}\)

_Học tốt nha_

7 tháng 8 2016

mk làm tắt dc ko

7 tháng 8 2016

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

22 tháng 11 2017

a/ \(A=\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{56}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{4}\)

b/ \(B=\frac{5}{11.16}+\frac{5}{16.21}+........+\frac{5}{61.66}\)

\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+........+\frac{1}{61}-\frac{1}{66}\)

\(=\frac{1}{11}-\frac{1}{66}\)

\(=\frac{5}{66}\)

22 tháng 11 2017

a) \(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

b) \(B=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)

\(B=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)

\(B=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)

13 tháng 7 2016

\(A=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{56.61}\right)\))

\(A=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{56}-\frac{1}{61}\right)\)

\(A=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)

\(A=5.\frac{50}{671}\)

\(A=\frac{250}{671}\)

Chúc em học tốt^^

13 tháng 7 2016

\(A=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+.....+\frac{5^2}{56.61}\)

\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+.....+\frac{5}{56.61}\right)\)

 \(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)

23 tháng 6 2015

\(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)

=\(\frac{1}{5}.\frac{5}{11.16}+\frac{1}{5}.\frac{5}{16.21}+\frac{1}{5}.\frac{5}{21.26}+...+\frac{1}{5}.\frac{5}{61.66}\)

=\(\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)

=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)

=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)

=\(\frac{1}{5}.\left(\frac{6}{66}-\frac{1}{66}\right)=\frac{1}{5}.\frac{5}{66}=\frac{1}{66}\)

23 tháng 6 2015

Đặt A = \(\frac{1}{11.16}+...+\frac{1}{61.66}\)

 

5A    = \(\frac{5}{11.16}+..+\frac{5}{61.66}\)

5a    = \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)

5a   =  \(\frac{1}{11}-\frac{1}{61}\)

5a   =  50/671

a     = \(\frac{50}{671}:5=\frac{10}{671}\)

11 tháng 4 2019

\(S1=2+4+6+...+150=\frac{2+150}{2}\cdot\left(\frac{150-2}{2}+1\right)\)

\(S1=\frac{152}{2}\cdot\left(\frac{148}{2}+1\right)=76\cdot\frac{150}{2}=76\cdot75=5700\)

- S3 và S5 tương tự nha bạn :vv

\(S2=5^2+5^3+5^4+...+5^{100}\)

\(\Rightarrow5S2=5^3+5^4+5^5+...+5^{100}+5^{101}\)

              \(S2=5^2+5^3+5^4+5^5+...+5^{100}\)

\(\Rightarrow5S2-S2=4S2=5^{101}-5^2\Rightarrow S2=\frac{5^{101}-5^2}{4}\)

\(S4=\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+...+\frac{5}{61\cdot66}\)

\(\Rightarrow S4=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)

\(\Rightarrow S4=\frac{1}{11}-\frac{1}{16}=\frac{16}{176}-\frac{11}{176}=\frac{5}{176}\)

11 tháng 5 2019

\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)

\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(1-\frac{1}{31}\right)\)

\(=5.\frac{30}{31}\)

\(=\frac{6}{31}\)

11 tháng 5 2019

\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)

\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(1-\frac{1}{31}\right)=\frac{150}{31}\)

31 tháng 8 2020

1) \(\frac{3^{2014}.8^{19}}{6^{60}.3^{1955}}=\frac{3^{2014}.\left(2^3\right)^{19}}{\left(2.3\right)^{60}.3^{1955}}=\frac{3^{2014}.2^{57}}{2^{60}.3^{2015}}=\frac{1}{2^3.3}=\frac{1}{24}\)

2) \(5^x+5^{x+1}=150\)

=> 5x(1 + 5) = 150

=> 5x.6 = 150

=> 5x = 25

=> \(x=\pm2\)

3) \(\frac{3}{11.16}+\frac{3}{16.21}+...+\frac{3}{61.66}=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)

\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)=\frac{3}{5}.\frac{5}{66}=\frac{1}{22}\)

31 tháng 8 2020

cảm ơn bạn Xyz đã trả lời