\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...........+\frac{1}{512}+\frac{1}{1024}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)

19 tháng 6 2019

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)

\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)

\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)

2 tháng 2 2020

Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)

Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)

=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)

Lấy (2) trừ (1) theo vế ta có : 

2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)

10 tháng 5 2017

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)

BẤM ĐÚNG NHÉ

8 tháng 6 2017

1023/1024 nhé bạn

14 tháng 8 2016

b) Đặt B = A : C ta có:

\(A=\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\)

\(A=5^3.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(A=5^3.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=5^3.\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(A=\frac{5^3.2}{5}\)

\(A=5^2.2\)

\(\Rightarrow A=50\)

\(C=\frac{1124.2247-1123}{1124+1123.2247}\)

\(C=\frac{\left(1123+1\right).2274-1123}{1123.2247+1124}\)

\(C=\frac{1123.2247-2247-1123}{1123.2247+1124}\)

\(C=\frac{1123.2247+1124}{1123.2247+1124}=1\)

\(\Rightarrow B=50:1=50\) 

Vậy B = 50

 

14 tháng 8 2016

cam on bn nhieu

12 tháng 8 2016

\(A=\left(1-\frac{1}{2^1}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^9}\right)+\left(1-\frac{1}{2^{10}}\right)\)

\(A=\left(1+1+1+...+1+1\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

                        10 số 1

\(A=10-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)

\(2B-B=1-\frac{1}{2^{10}}=B\)

=> \(A=10-\left(1-\frac{1}{2^{10}}\right)\)

=> \(A=10-1+\frac{1}{2^{10}}\)

=> \(A=9\frac{1}{1024}\)

25 tháng 9 2016

\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}=\frac{1}{1024}\)dùng phương pháp loại trừ 

\(\frac{1}{2.5}\)\(+\)\(\frac{1}{5.8}\)\(+\frac{1}{8.11}\)\(+...+\frac{1}{152.155}\)

=\(\frac{1}{2}\) \(-\frac{1}{5}\) \(+\frac{1}{5}\) \(-\frac{1}{8}\) \(+...+\frac{1}{152}\) \(-\frac{1}{155}\)

=\(\frac{1}{2}\)\(-\frac{1}{155}\)

=\(\frac{153}{310}\)

7 tháng 7 2021

a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{1000}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{999}{1000}\right)\)

\(=-\frac{1.2.3...999}{2.3.4...1000}=-\frac{1}{1000}\)

b)\(B=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}:\frac{3}{4}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}:\frac{3}{4}=\frac{3}{4}:\frac{3}{4}=1\)

d) \(D=1+\frac{1}{2}+\frac{1}{4}+..+\frac{1}{512}+\frac{1}{1024}\)

=> \(2D=2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\)

=> \(2D-D=\left(2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}+\frac{1}{1024}\right)\)

=> \(D=2-\frac{1}{1024}=\frac{2047}{1024}\)