Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
B = \(\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}\)
= \(\frac{3000-1}{1}+\frac{3000-2}{2}+\frac{3000-3}{3}+...+\frac{3000-2999}{2999}\)
= \(\left(\frac{3000}{1}+\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{2999}\right)-\left(\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{2999}{2999}\right)\)
= \(3000+3000.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)-2999\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)+\frac{3000}{3000}\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
đặt tử là A
A=1+2+2^2+2^3+...+2^2012
2A=2+2^2+2^3+2^4+...+2^2013
2A-A=2+2^2+2^3+2^4+...+2^2013-1-2-2^2-2^3-...-2^2012
A=2^2013-1
đặt mẫu là B
B=2^2014-2
=2(2^2013-1)
từ đó suy ra A/B=(2^2013-1)/2(2^2013-1)=1/2
\(\Rightarrow A=\frac{\left[2+2^2+2^3+...+2^{2013}\right]-\left[1+2+2^2+...+2^{2012}\right]}{2^{2014}-2}\)
\(\Rightarrow A=\frac{2^{2013}-1}{2^{2014}-2}\)
Đặt A = 1 + 2 + 22 + 23+ ...+ 22012
2A = 2 + 22 + 23 + 24 +....+22013
Lấy 2A - A = 2 + 22 +23 + 24 +....+22013 - 1-2-22- 23 - ... - 22012
A = 22013 - 1
Khi đó : M = A / 22014 -2
= 22013 - 1 / 2.( 22013 - 1 )
= 1/2
Vậy M= 1/2
Đặt tử số là A = 1 + 2 + 22 + 23 + ... + 22012
2A = 2 + 22 + 23 + 24 + ... + 22013
2A - A = (2 + 22 + 23 + 24 + ... + 22013) - (1 + 2 + 22 + 23 + ... + 22012)
A = 22013 - 1
=> \(M=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2.\left(2^{2013}-1\right)}=\frac{1}{2}\)
\(TA-CO':\)
\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)
\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(A=\frac{4}{7}\)
\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)
ĐẶT \(C=1+2+...+2^{2013}\)
\(\Rightarrow2C=2+2^2+...+2^{2014}\)
\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)
\(\Rightarrow C=2^{2014}-2\)
\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)
\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)
\(B=\frac{1}{2}\)
\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)
\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)
VẬY, \(A-B=\frac{-1}{14}\)