\(\frac{1}{101}\)-\(\frac{1}{101.100}\)-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

\(A=\)\(-\frac{1}{101}-\frac{1}{101.100}-\frac{1}{100.99}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(A=\)-\(\frac{1}{101}-\)\(\left(\frac{1}{101.100}+\frac{1}{100.99}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(A=\)\(-\frac{1}{101}-\)\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}+\frac{1}{100.101}\right)\)

\(A=\)\(-\frac{1}{101}\)\(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\right)\)

\(A=-\frac{1}{101}-\)\(\left(1-\frac{1}{101}\right)\)

\(A=-\frac{1}{101}-1+\frac{1}{101}\)

\(A=\left(-\frac{1}{101}+\frac{1}{101}\right)-1\)

\(A=0-1=-1\)

22 tháng 6 2018

\(D=\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(D=\frac{1}{99.100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(D=\frac{1}{99}-\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(D=\frac{1}{99}-\frac{1}{100}-\left(1-\frac{1}{99}\right)\)

\(D=\frac{1}{99}-\frac{1}{100}-1+\frac{1}{99}\)

b tự làm nốt nhé

22 tháng 6 2018

D=1100.99 −199.98 −198.97 −...−13.2 −12.1 

D=199.100 −(11.2 +12.3 +...+197.98 +198.99 )

D=199 −1100 −(1−12 +12 −13 +...+198 −199 )

D=199 −1100 −(1−199 )

D=199 −1100 −1+199 

4 tháng 3 2018

Ta có : 

\(A=\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}\)

\(A=\left(101-1-...-1\right)+\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)\)

\(A=\frac{102}{102}+\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}\)

\(A=102\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}+\frac{1}{102}\right)\)

\(\Rightarrow\)\(\frac{A}{B}=\frac{102\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}=\frac{102}{1}=102\)

Vậy \(\frac{A}{B}=102\)

Chúc bạn học tốt ~

6 tháng 7 2019

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}=...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right).\)

\(=-\left(1-\frac{1}{100}\right)=-\frac{99}{100}\)

chúc bạn học tốt

6 tháng 7 2019

Trả lời

1/100.99-1/99.98-1/98.97-...-1/3.2-1/2.1

=1/100-1/1

=1/100-100/100

=-99/100.

4 tháng 3 2018

mình cần gấp nhé

28 tháng 4 2015

 

b) \(GọiB=\frac{-1}{100.99}+\frac{-1}{99.98}+...+\frac{-1}{2.1}\)

\(2B=\frac{-2}{100.99}+\frac{-2}{99.98}+...+\frac{-2}{2.1}\)

\(2B=\frac{-1}{100}-\frac{-1}{99}+\frac{-1}{99}-\frac{-1}{98}+...+\frac{-1}{2}-\frac{-1}{1}\)

\(2B=\frac{-1}{100}-\frac{-1}{1}\)

\(2B=\frac{99}{100}\Rightarrow B=\frac{99}{100}:2=\frac{99}{200}\)

9 tháng 8 2020

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)

\(< =>3A=\frac{3}{3}+\frac{3}{3^2}+\frac{3}{3^3}+...+\frac{3}{3^8}\)

\(< =>3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(< =>3A-A=1-\frac{1}{3^8}=\frac{3^8-1}{3^8}\)

\(< =>A=\frac{3^8-1}{\frac{3^8}{2}}\)

a) \(\frac{53}{101}\cdot-\frac{13}{97}+\frac{53}{101}\cdot-\frac{84}{97}\)

\(=\frac{53}{101}\cdot\left(-\frac{13}{97}-\frac{84}{97}\right)\)

\(=\frac{53}{101}\cdot\left(-1\right)\)

\(=-\frac{53}{101}\)

17 tháng 1 2016

S=\(\frac{1}{100}-\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-......-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)\(=1-\frac{1}{100}-\frac{2}{99}\)\(=\frac{9601}{9900}\)

17 tháng 1 2016

tính phải ko