Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8}{9}+\frac{1}{3}=\frac{8}{9}+\frac{3}{9}=\frac{11}{9}\)
\(\frac{8}{9}+\frac{1}{3}=\frac{8}{9}+\frac{3}{9}=\frac{11}{9}\)
\(\frac{24}{15}-\frac{20}{25}=\frac{24}{15}-\frac{4}{5}=\frac{24}{15}-\frac{12}{15}=\frac{12}{15}\)
\(3\frac{1}{6}\times2\frac{3}{5}=\frac{19}{6}\times\frac{13}{5}=\frac{247}{30}\)
\(2\frac{1}{10}\div2\frac{2}{5}=\frac{21}{10}\div\frac{12}{5}=\frac{21}{10}\times\frac{5}{12}=\frac{7}{8}\)
a ) \(1\frac{1}{2}+2\frac{1}{3}+3\frac{1}{6}-5\)
\(=\frac{3}{2}+\frac{7}{3}+\frac{19}{6}-\frac{5}{1}\)
\(=\frac{9}{6}+\frac{14}{6}+\frac{19}{6}-\frac{30}{6}\)
\(=\frac{23}{6}+\frac{19}{6}-\frac{30}{6}\)
\(=\frac{42}{6}-\frac{30}{6}\)
\(=\frac{12}{6}=2\)
b ) \(2\frac{2}{3}\times3\frac{3}{4}\div4\frac{4}{5}\)
\(=\frac{8}{3}\times\frac{15}{4}\div\frac{24}{5}\)
\(=\frac{120}{12}\div\frac{24}{5}\)
\(=\frac{120}{12}\times\frac{5}{24}\)
\(=\frac{600}{288}=\frac{25}{12}\)
c ) \(4\frac{1}{5}+5\frac{1}{3}-2\frac{2}{3}\times3\frac{1}{5}+\frac{9}{25}\div\frac{9}{20}\)
\(=\frac{21}{5}+\frac{16}{3}-\frac{8}{3}\times\frac{16}{5}+\frac{9}{25}\div\frac{9}{20}\)
\(=\frac{63}{15}+\frac{80}{15}-\frac{128}{15}+\frac{9}{25}\times\frac{20}{9}\)
\(=\frac{143}{15}-\frac{128}{15}+\frac{180}{225}\)
\(=\frac{15}{15}+\frac{12}{15}\)
\(=\frac{27}{15}=\frac{9}{5}\)
a) \(\frac{3}{5}+25-\frac{1}{5}=\left(\frac{3}{5}-\frac{1}{5}\right)+25=\frac{2}{5}+25=\frac{2}{5}+\frac{125}{5}=\frac{127}{5}\)
b) \(13\times3\times32,27+67,63\times39=39\times32,27+67,63\times39\)
\(=39\times\left(32,27+67,63\right)\)
\(=39\times99,9=3196,8\)
(Bạn xem lại đề nhé)
c) \(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times....\times\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times.....\times\frac{99}{100}\)
\(=\frac{1\times2\times3\times...\times99}{2\times3\times4\times....\times100}=\frac{1}{100}\)
a, \(\frac{3}{5}+25-\frac{1}{5}=\frac{127}{5}\)
b, \(\text{13 x 3 x 32,27 + 67,63 x 39 =}3896,1\)
............................
thank for watching me do homework
A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{125}\)
giup minh nhé