Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a=3b=>a/3=b/2 => a/21=b/14(1)
5b=7c=>b/7=c/5=>b/14=c/5(2)
từ (1) và (2) => a/21=b/14=c/10 = 3a/63 = 7b/98 = 5c/50
áp dụng tinh chất của dãy tỉ số bằng nhau ta có:
3a/63 = 7b/98 = 5c/50 = 3a-7b+5c/63-98+50 =30/15 =2
+)a/21=2=>a=21.2=42
+)b/14=2=>b=14.2=28
+)c/10=2=>c=10.2=20
=>a+b+c=42+28+20=90
Ta có :
\(2a=\frac{a}{\frac{1}{2}};3b=\frac{b}{\frac{1}{3}};5b=\frac{b}{\frac{1}{5}};7c=\frac{c}{\frac{1}{7}}\)
Lại có \(\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}\\\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{7}}\end{cases}}\Rightarrow\frac{a}{\frac{3}{2}}=b=\frac{c}{\frac{5}{7}}\Leftrightarrow\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}=\frac{3a-7b+5c}{\frac{9}{2}-1+\frac{25}{7}}=\frac{-30}{\frac{99}{14}}=\frac{-140}{33}\)
\(\Rightarrow\hept{\begin{cases}3a=\frac{-140}{33}\cdot\frac{9}{2}=\frac{-210}{11}\Rightarrow a=\frac{-70}{11}\\7b=\frac{-140}{33}\Rightarrow b=\frac{-20}{33}\\5c=\frac{-140}{33}\cdot\frac{25}{7}=\frac{-500}{33}\Rightarrow c=\frac{-100}{33}\end{cases}}\)
Vậy....
Chắc sai =))
Ta có : 4a = 3b => 28a = 21b (1)
7b = 5c => 21b = 15c (2)
Từ (1) và (2) => 28a = 21b = 15c
Ta có : 28a = 21b = 15c \(=\frac{a}{\frac{1}{28}}=\frac{b}{\frac{1}{21}}=\frac{c}{\frac{1}{15}}=\frac{2a}{\frac{1}{14}}=\frac{3b}{\frac{1}{7}}=\frac{2a+3b-c}{\frac{1}{14}+\frac{1}{7}-\frac{1}{15}}=\frac{186}{\frac{31}{210}}=1260\)
Nên : 28a = 1260 => a = 45
21b = 1260 => b = 60
15c = 1260 => c = 84
Vậy ........................
Ta có:
\(4a=3b\)=> \(\frac{a}{3}=\frac{b}{4}\)=> \(\frac{a}{15}=\frac{b}{20}\left(1\right)\)
\(7b=5c\)=>\(\frac{b}{5}=\frac{c}{7}\) => \(\frac{b}{20}=\frac{c}{28}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\)
=>\(\frac{a}{15}=\frac{b}{20}=\frac{c}{28}\)=>\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}=\frac{2a+3b-c}{30+60-28}=\frac{186}{62}=3\)
=>\(\frac{a}{15}=3\)=>\(a=45\)
\(\frac{b}{20}=3\)=>\(b=60\)
\(\frac{c}{28}=3\)=>\(c=84\)
Vậy \(a=40;b=60;c=84\)
Ta có: \(2a=3b\)=> \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{21}=\frac{b}{14}\left(1\right)\)
\(5b=7c\)=>\(\frac{b}{7}=\frac{c}{5}\) =>\(\frac{b}{14}=\frac{c}{10}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\)
=>\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
=>\(\frac{a}{21}=2\)=>\(a=42\)
\(\frac{b}{14}=2\)=>\(b=28\)
\(\frac{c}{10}=2\)=>\(c=20\)
Vậy \(a=42;b=28;c=20\)
Ta có :
\(3a+5b-7c=30\)
\(2a=3b;5b=7c\)
\(\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{2}\Leftrightarrow\dfrac{a}{21}=\dfrac{b}{14}\)
\(\Leftrightarrow\dfrac{b}{7}=\dfrac{c}{5}\Leftrightarrow\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a+5b-7c}{3.21+14.5-10.7}=\dfrac{30}{63}=\dfrac{10}{21}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{21}=\dfrac{10}{21}\Leftrightarrow a=10\\\dfrac{b}{14}=\dfrac{10}{21}\Leftrightarrow b=\dfrac{140}{21}\\\dfrac{c}{10}=\dfrac{10}{21}\Leftrightarrow c=\dfrac{100}{21}\end{matrix}\right.\)
Vậy .............
Theo đề bài ta có:
\(2a=3b;5b=7c\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14};\dfrac{b}{14}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{3a}{63}=\dfrac{5b}{70}=\dfrac{7c}{70}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3a}{63}=\dfrac{5b}{70}=\dfrac{7c}{70}\)
\(=\dfrac{3a+5b-7c}{63+70-70}=\dfrac{30}{63}=\dfrac{10}{21}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{10}{21}.21=10\\b=\dfrac{10}{21}.14=\dfrac{20}{3}\\c=\dfrac{10}{21}.10=\dfrac{100}{21}\end{matrix}\right.\)
Vậy...
3a+5c=7b+30
=>3a+5c-7b=30
\(2a=3b=>\frac{a}{3}=\frac{b}{2}=>\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=>\frac{a}{21}=\frac{b}{14}\)
\(5b=7c=>\frac{b}{7}=\frac{c}{5}=>\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=>\frac{b}{14}=\frac{c}{10}\)
\(=>\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
\(=>\frac{a}{21}=2=>a=21.2=42\)
\(=>\frac{b}{14}=2=>b=14.2=28\)
\(=>\frac{c}{10}=2=>c=10.2=20\)
Vậy a=42,b=28,c=20.
minh tran
ta có 2a=3b =>a=3b/2
5b=7c =>c=5b/7
=>3.3b/2+5.5b/7+7b=30
=>9b/2+25b/7+7b=30
=>63b/14+50b/14+93b/14=30
=>211b/14=30
=>211/14.b=30
=>211/14.30=b
=>6330/14=b
=>3165/7=b
=>9495/7=3b=2a
=>a=9495/14
tương tự c= vượt giới hạn tính
\(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a-7b+5c}{3\cdot21-7\cdot14+5\cdot10}=\frac{-30}{15}=-2\)
a = - 42; b = - 28; c = - 20
2a=3b
5b=7c
3a+5c+7b=30
có 2a=3b suy ra a=3b/2
có 5b=7c suy ra c=5b/7
thay số vào 3a+5c+7b=30
<=> 3*(3b/2) + 5 *(5b/7) + 7b = 30
<=> 9b/2 + 25b/7 + 7b = 30
<=>63b/14+ 50b/14 +98b/14=30
<=>211b/14=30
<=>211b=420
<=> b=2( 1,99 )
thay số vào a=3b/2=6/2=3
thay số vào c=5b/7=10/7
kết quả là a=3,b=2,c=10/7
thử lại
3a+5c+7b=3*3+5*10/7 + 7*2=9+ 50/7 + 14=30 (đã làm tròn )
-> kết quả đã thử lại thành công
Ta có 2a = 3b => 10a = 15b (1) 5b = 7c => 15b = 21c (2) Từ (1) và (2) => 10a=15b=21c =>a/21 = b/14 =c/10 => 3a/63 = 5b/70 = 7c/70 Áp dụng tính chất của dãy tỉ số bằng nhau , ta có: 3a/63 = 5b/70 = 7c/70 = 30/63 = 10/21 => a = 10 ; b = 20/3 ; c = 100/21
Ta có 2a = 3b => 10a = 15b (1) 5b = 7c => 15b = 21c (2) Từ (1) và (2) => 10a=15b=21c =>a/21 = b/14 =c/10 => 3a/63 = 5b/70 = 7c/70 Áp dụng tính chất của dãy tỉ số bằng nhau , ta có: 3a/63 = 5b/70 = 7c/70 = 30/63 = 10/21 => a = 10 ; b = 20/3 ; c = 100/21