Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=\sqrt{5}-2\)
b: \(=2\sqrt{3}+4\sqrt{3}-5\sqrt{3}-9\sqrt{3}=-8\sqrt{3}\)
c: \(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2\sqrt{2}}=\sqrt{16-8}=2\sqrt{2}\)
d: \(=\sqrt{2}+1-2+\sqrt{2}=2\sqrt{2}-1\)
e: \(=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\dfrac{6+2\sqrt{5}}{4}\)
\(=\dfrac{16-3-\sqrt{5}}{2}=\dfrac{13-\sqrt{5}}{2}\)
f: \(=\sqrt{5\sqrt{3+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{5\sqrt{3+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3+5\left(5-\sqrt{3}\right)}}\)
\(=\sqrt{5\sqrt{3+25-5\sqrt{3}}}\)
\(=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
=\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-2-\sqrt{2+\sqrt{3}}}.\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}=\sqrt{4-3}=1\)
\(=\sqrt{4+\sqrt{5.\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}=\sqrt{4+\sqrt{5.\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}.\)
\(=\sqrt{4+\sqrt{5.\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)
https://hoc24.vn/hoi-dap/question/407636.html
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}\)
= 9
~ ~ ~ ~ ~
\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\sqrt{3}-2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
Bài 1:
a)
\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)
b)
\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)
\(=3\sqrt{5}+1\)
c)
\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)
\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)
d)
\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)
\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)
Bài 1:
a)
\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)
b)
\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)
\(=3\sqrt{5}+1\)
c)
\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)
\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)
d)
\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)
\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)
1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)
3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)
\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)
\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)
a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= \(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= -2
b); c); d) làm tương tự
a) A = \(\sqrt{3+\sqrt{5+2\sqrt{3}}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
= \(\sqrt{\left(3+\sqrt{5+2\sqrt{3}}\right)\left(3-\sqrt{5+2\sqrt{3}}\right)}\)
= \(\sqrt{3^2-\left(\sqrt{5+2\sqrt{3}}\right)^2}\)
= \(\sqrt{9-5-2\sqrt{3}}\)
= \(\sqrt{4-2\sqrt{3}}\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}\)
= \(\sqrt{3}-1\)
b) B = \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
= \(\sqrt{4+\sqrt{4}.\sqrt{2}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right) \left(2-\sqrt{2+\sqrt{2}}\right)}\)
= \(\sqrt{4+2\sqrt{2}}.\sqrt{2^2-\left(\sqrt{2+\sqrt{2}}\right)^2}\)
= \(\sqrt{2\left(2+\sqrt{2}\right)}.\sqrt{2-\sqrt{2}}\)
= \(\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
= \(\sqrt{2.2}=2\)