Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2.9+1/9.7+1/7.19+...+1/252.509
=?
??????
\(A=\frac{1}{2.9}+\frac{1}{9.7}+...+\frac{1}{252.509}\)
\(A=\frac{2}{4.9}+\frac{2}{9.14}+...+\frac{2}{504.509}\)
\(A=\frac{2}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{504.509}\right)\)
\(A=\frac{2}{5}.\left(\frac{9-4}{4.9}+\frac{14.9}{9.14}+...+\frac{509-504}{504.509}\right)\)
\(A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}.\frac{505}{2036}\)
\(A=\frac{101}{1018}\)
\(B=\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
\(\frac{1}{2}B=\frac{1}{10.9.2}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405.2}\)
\(\frac{1}{2}B=\frac{1}{10.18}+\frac{1}{18.26}+\frac{1}{26.34}+...+\frac{1}{802.810}\)
\(4B=\frac{8}{10.18}+\frac{8}{18.26}+\frac{8}{26.34}+...+\frac{8}{802.810}\)
\(4B=\frac{18-10}{10.18}+\frac{26-18}{28.26}+\frac{34-26}{26.34}+...+\frac{810-802}{802.810}\)
\(4B=\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\)
\(4B=\frac{1}{10}-\frac{1}{810}\)
\(4B=\frac{8}{81}\)
\(B=\frac{2}{81}\)
a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)
b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)
c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)
d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
a)b) Bạn nhân cả tử và mẫu với 2. Mình làm luôn, ko ghi lại đề bài
a)\(\frac{2}{4.9}+\frac{2}{9.14}+\frac{2}{14.19}+...+\frac{2}{504.509}\)
=\(\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)
=\(\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)
=\(\frac{2}{5}.\frac{505}{2036}=\frac{101}{1018}\)
b)\(\frac{2}{10.18}+\frac{2}{18.26}+\frac{2}{26.34}+...+\frac{2}{802.810}\)
=\(\frac{1}{4}\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\right)\)
=\(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{810}\right)\)
=\(\frac{1}{4}.\frac{8}{81}=\frac{2}{81}\)
c) Mình biết làm, ddoiwtj tí nữa mình làm cho. Giờ đang mỏi tay
Thẳng Nobita kun có chép bài thì đừng t..i..c..k cho nó
\(\dfrac{5}{2}A=\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{504.509}\)
\(\dfrac{5}{2}A=\dfrac{9-4}{4.9}+\dfrac{14-9}{9.14}+\dfrac{19-14}{14.19}+...+\dfrac{509-504}{504.509}\)
\(\dfrac{5}{2}A=\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{504}-\dfrac{1}{509}\)
\(\dfrac{5}{2}A=\dfrac{1}{4}-\dfrac{1}{509}\)
\(A=\left(\dfrac{1}{4}-\dfrac{1}{509}\right).\dfrac{2}{5}\)
\(A=\dfrac{1}{10}-\dfrac{2}{2545}< \dfrac{1}{10}\)
\(\Rightarrow A< \dfrac{1}{10}\)(đpcm)
Chúc bạn học tốt!
Ta có:
A=\(\dfrac{1}{2.9}+\dfrac{1}{9.7}+\dfrac{1}{7.19}+...+\dfrac{1}{252.509}\)
A=2.(\(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{504.509}\))
A=\(\dfrac{2}{5}\).(\(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{504}-\dfrac{1}{509}\))
A=\(\dfrac{2}{5}\).(\(\dfrac{1}{4}-\dfrac{1}{509}\))
A=\(\dfrac{2}{5}\).(\(\dfrac{509}{2036}-\dfrac{4}{2036}\))
A=\(\dfrac{2}{5}\).\(\dfrac{505}{2036}\)
A=\(\dfrac{101}{1018}\)
A=\(\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
=\(\frac{1}{2}-\frac{1}{509}\)
=\(\frac{507}{1018}\)
a)
\(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{x+3}=\dfrac{9}{38}\\\\ \dfrac{1}{x+3}=\dfrac{1}{4}-\dfrac{9}{38}\\ \dfrac{1}{x+3}=\dfrac{1}{76}\\ x+3=76\\ x=73.\)
b)
\(\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ \dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ 2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ 2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}=\dfrac{1}{18}\\ x+1=18\\ x=17.\)
b)\(\dfrac{1}{7}B=\dfrac{1}{10.18}+\dfrac{1}{18.26}+\dfrac{1}{26.34}+...+\dfrac{1}{802.810}\)
\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{8}{10.18}+\dfrac{8}{18.26}+\dfrac{8}{26.34}+...+\dfrac{8}{802.810}\right)\)
\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{34}+...+\dfrac{1}{802}-\dfrac{1}{810}\right)\)
\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{810}\right)\)
\(\dfrac{1}{7}B=\dfrac{1}{8}.\dfrac{8}{81}\)
\(\dfrac{1}{7}B=\dfrac{1.8}{8.81}\)
\(\dfrac{1}{7}B=\dfrac{1}{81}\)
\(B=\dfrac{1}{81}:\dfrac{1}{7}\)
\(B=\dfrac{7}{81}\)
ê cu bn chơi ngọc rồng à có ac bang bang ko mk mượn