Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 68 :
a ) \(\sqrt[3]{27}-\sqrt[3]{8}-\sqrt[3]{125}=3-2-5=-4\)
b ) \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54.4}=\sqrt[3]{27}-\sqrt[3]{216}=3-6=-3\)
Bài 69 :
a ) Ta có : \(\left\{{}\begin{matrix}3^3=27\\\left(\sqrt[3]{123}\right)^3=123\end{matrix}\right.\)
Vì 27 < 123 nên suy ra \(3< \sqrt[3]{123}\)
Vậy \(3< \sqrt[3]{123}\)
LG a
3√27−3√−8−3√125273−−83−1253
Phương pháp giải:
Tính từng căn bậc ba rồi thực hiện phép tính
Lời giải chi tiết:
3√27−3√−8−3√125=3√33−3√(−2)3−3√53273−−83−1253=333−(−2)33−533
=3−(−2)−5=3−(−2)−5
=3+2−5=0=3+2−5=0.
LG b
3√1353√5−3√54.3√4135353−543.43
Phương pháp giải:
Sử dụng các công thức:
3√a.b=3√a.3√ba.b3=a3.b3.
3√ab=3√a3√bab3=a3b3, với b≠0b≠0.
Lời giải chi tiết:
3√1353√5−3√54.3√4=3√27.53√5−3√54.4135353−543.43=27.5353−54.43
=3√5.3√273√5−3√216=53.27353−2163
=3√27−3√216=273−2163
=3√33−3√63=333−633
=3−6=−3=3−6=−3.
a)\(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
\(=3+2-5\)
\(=0\)
b)\(\frac{\sqrt[3]{153}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
\(=\sqrt[3]{\frac{153}{5}}-\sqrt[3]{54.4}\)
\(=\sqrt[3]{\frac{153}{5}}-6\)
Theo mình câu b như vậy
pham trung thanh câu b bn làm thiếu hay sao ý? Theo tôi, cả bài làm như thế này.
Giải:
a, \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
\(=\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{12}=3+2-5\)
\(=0\)
b, \(\frac{\sqrt[3]{153}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
\(=\sqrt[3]{\frac{135}{5}}-\sqrt[3]{54.4}\)
\(=\sqrt[3]{27}-\sqrt[3]{216}\)
\(=3-6\)
\(=-3\)
a) \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
= \(\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)
= \(-16\sqrt{3}\)
b) \(\left(a.\sqrt{\dfrac{a}{b}}+2\sqrt{ab}+b.\sqrt{\dfrac{b}{a}}\right)\sqrt{\dfrac{a}{b}}\)
= \(\dfrac{a^2}{b}+2a+b\) = \(\dfrac{a^2+\left(2a+b\right)b}{b}\) = \(\dfrac{a^2+2ab+b^2}{b}\) = \(\dfrac{\left(a+b\right)^2}{b}\)
c) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\) = \(3+2-5=0\)
d) \(3+\sqrt{18}+\sqrt{3}+\sqrt{8}\) = \(3+3\sqrt{2}+\sqrt{3}+2\sqrt{2}\)
= \(3+\sqrt{3}+5\sqrt{2}\)
6: \(=3\cdot2\sqrt{3}-4\cdot3\sqrt{3}+5\cdot4\sqrt{3}=14\sqrt{3}\)
7: \(=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=3\sqrt{3}\)
8: \(=2\cdot4\sqrt{2}+4\cdot2\sqrt{2}-5\cdot3\sqrt{2}=\sqrt{2}\)
9: \(=3\cdot2\sqrt{5}-2\cdot3\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)
10: \(=2\cdot2\sqrt{6}-2\cdot3\sqrt{6}+3\sqrt{6}-5\sqrt{6}=-4\sqrt{6}\)
a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)
c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)
d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)
b: Ta có: \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}\cdot\sqrt[3]{4}\)
\(=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54\cdot4}\)
=3-6
=-3
\(a,=3\sqrt{5}-2\sqrt{5}-\sqrt{5}+5\sqrt{5}=5\sqrt{5}\\ b,=9\sqrt{a}-6\sqrt{a}-\sqrt{a}=2\sqrt{a}\\ c,Sửa:3\sqrt[3]{27}-3\sqrt[3]{-8}-3\sqrt[3]{-125}\\ =3\cdot3-3\left(-2\right)-3\left(-5\right)\\ =9+6+15=30\)
a ) 27 3 − − 8 5 − 125 3 = 33 3 − ( − 2 ) 3 3 − 53 3 = 3 − ( − 2 ) − 5 = 3 + 2 − 5 = 0 b ) 135 3 5 3 − 54 3 ⋅ 4 3 = 135 5 3 − 54.4 3 = 27 3 − 216 3 = 33 3 − 63 3 = 3 − 6 = − 3