Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tử số bằng: 2008+2007/2+2006/3+2005/4+…..+2/2007+1/2008
(Phân tích 2008 thành 2008 con số 1 rồi đưa vào các nhóm)
= (1 + 2007/2) + (1 + 2006/3) + (1 + 2005/4) +... + (1 + 2/2007) + ( 1 + 1/2008) + (1)
= 2009/2 + 2009/3 + 2009//4 + ……. + 2009/2007 + 2009/2008 + 2009/2009
= 2009 x (1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009)
Mẫu số: 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009
Vậy A = 2009
Ta có :
\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=2009\)
Ta có: \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
Xét tử : \(2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=\left(1+1+...+1\right)+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)( có 2008 số hạng 1 )
\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)+1\)
\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)
\(=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
Ghép tử và mẫu....
Vậy A = 2009
tử là M mẫu là N ta dc
\(M=2008+\frac{2007}{2}+...+\frac{1}{2008}\)
\(=\left(1+...+1\right)+\frac{2007}{2}+...+\frac{1}{2008}\)
\(=\frac{2009}{2}+...+\frac{2009}{2008}+\frac{2009}{2009}\)
\(=2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)
vậy ta có
\(A=\frac{M}{N}=\frac{2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}}\)\(=2009\)
a) (-1) + 2 + (-3) + 4 + .... + (-2009) + 2010
= (-1 + 2) + (-3 + 4) + ..... + (-2009 + 2010)
= -1 + (-1) + (-1) + .... + (-1)
= -1 . 1005 = -1005
b) 1 + (-2) + (-3) + 4 + 5 + (-6) + (-7) + 8 + ... + 2005 + (-2006) + (-2007) + 2008
= [1 + (-2) + (-3) + 4] + [5 + (-6) + (-7) + 8 ] + ..... + [2005 + (-2006) + (-2007) + 2008]
= 0 + 0 + ...... + 0 = 0
\(\frac{M}{N}=\frac{\frac{1}{2007}+\frac{2}{2006}+......+\frac{2006}{2}+\frac{2007}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2006}+\frac{1}{2007}}\)
\(\frac{M}{N}=\frac{\frac{1}{2007}+1+\frac{2}{2006}+1+.......+\frac{2007}{1}+1+\frac{2008}{2008}-2008}{\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+.....+\frac{1}{2}}\)
\(\frac{M}{N}=\frac{\frac{2008}{2007}+\frac{2008}{2006}+....+\frac{2008}{1}+\frac{2008}{2008}-2008}{\frac{1}{2008}+........+\frac{1}{2}}\)
đến đây là ra rùi ha
SAo lại 1= 2 -3 -4 + 5 ....+2006-2007-2008+2009
Nếu là 1 + 2-3-4 + 5 ...+2006-2007 -2008 +2009 thì đây này
1 + 2-3-4 + 6-7-8 + 9 +... +2006 - 2007 -2008 +2009
= 1 -5 + 5 -9 + 9 +...-2009 + 2009
= 1 + 0 + 0 + ...+0
=1
Ta có tử số bằng: 2008+2007/2+2006/3+2005/4+…..+2/2007+1/2008
(Phân tích 2008 thành 2008 con số 1 rồi đưa vào các nhóm)
= (1 + 2007/2) + (1 + 2006/3) + (1 + 2005/4) +... + (1 + 2/2007) + ( 1 + 1/2008) + (1)
= 2009/2 + 2009/3 + 2009//4 + ……. + 2009/2007 + 2009/2008 + 2009/2009
= 2009 x (1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009)
Mẫu số: 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009
Vậy A = 2009
A= 2009