Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
1: \(\dfrac{4}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}\)
\(=1+\dfrac{1}{2}\)
\(=\dfrac{3}{2}\)
2: \(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)
\(=\dfrac{1}{3}\)
tổng số số hạng của dãy là: \(\left(\left(2n-1\right)^2-12\right):20+1\)chia 20 vì mỗi phần tử cách nhau 20 đơn vị
tổng của dãy : \(\frac{\left(\left(\left(2n-1\right)^2-12\right):20+1\right)\times\left(\left(2n-1\right)^2+12\right)}{2}\)
bài b tương tự ạ
a) (-37) + 14 + 26 + 37
= [(-37) + 37] + (14 + 26)
= 0 + 40 = 40
b) (-24) + 6 + 10 + 24
= [(-24) + 24] + (10 + 6)
= 0 + 16 = 16
c) 15 + 23 + (-25) + (-23)
= [15 + (-25)] + [23 + (-23)]
= (-10) + 0 = -10
d) 60 + 33 + (-50) + (-33)
= [60 + (-50)] + [33 + (-33)]
= 10 + 0 = 10
e) (-16) + (-209) + (-14) + 209
= [(-16) + (-14)] + [(-209) + 209]
= (-30) + 0 = -30
f) \(-3^2+\left(-54\right)\div\left[\left(-2\right)^8+7\right]\times\left(-2\right)^2\\ =\left(-9\right)+\left(-54\right)\div263\times4\\ =\left(-9\right)+\dfrac{-216}{263}=\dfrac{-2583}{263}\)
a. \(\left[\left(-37\right)+37\right]+\left(14+16\right)\) = 30
B. \(\left[\left(-24\right)+24\right]+\left(10+6\right)\) = 16
C. \(\left[\left(-23\right)+23\right]+\left(15-23\right)\)= -8
d. \(\left[33-33\right]+\left(60-50\right)\) = 10
e. \(\left(209-209\right)+\left(-16-14\right)\)= -30
a) \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
b) \(1^2+2^2+...+n^2\)
\(=1\left(2-1\right)+2\left(3-1\right)+...+n\left[\left(n+1\right)-1\right]\)
\(=1.2+2.3+...+n\left(n+1\right)-\left(1+2+...+n\right)\)
\(=\frac{1.2.3+2.3.\left(4-1\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]}{3}-\frac{n\left(n+1\right)}{2}\)
\(=\frac{1.2.3-1.2.3+2.3.4-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
\(=n\left(n+1\right)\left(\frac{n+2}{3}-\frac{1}{2}\right)\)
\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
câu c đâu bạn