Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = 1 + 3 + 5 + 7 +... + 101
A = \(\frac{102.51}{2}=2601\)
M = 16 - 18 + 20 - 22 + 24 - 26 + .. + 64 - 66 + 68
M = ( 16 - 18 ) + ( 20 - 22 ) + ( 24 - 26 ) + ... + ( 64 - 66 ) + 68
M = (- 2 + - 2 + -2 + ... + - 2 ) + 68
M = 25/2 . ( - 2 ) + 68
M = -25 + 68
M = 43
H = ( 1 + 2 + 3 +...+ 99 ) x ( 13 x 15 - 12 x 15 - 15 )
H = ( 1 + 2 + 3 +...+ 99 ) x { (13 - 12 - 1) x 15 }
H = ( 1 + 2 + 3 +...+ 99 ) x 0
H = 0
G = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + 13 + 14 - ... + 301 + 302
G = ( 1 + 2 ) + ( -3 - 4 ) + ( 5 + 6 ) + ( -7 - 8 ) + ( 9 + 10 ) + ( - 11 - 12 ) + ( 13 + 14 ) -...+ ( 301 + 302 )
G = ( 3 - 7 ) + ( 11 - 15 ) + ( 19 - 23 ) + 27 - ... + 603
G = -4 + - 4 + -4 + 27 - ... + 603
G = 75 x ( -4 ) + 603
G = -300 + 603
G = 303
2.
a) 1 + 2 + 3 + 4 +...+ 99 + 100 + 2 x X = 5052
= > \(\frac{100.101}{2}\)+ 2 x X = 5052
= > 5050 + 2 x X = 5052
= > 2X = 2
= > X = 1
3/ 4x7 + 1 / 7 x 8 + 5 / 8 x13 + 2 / 13 x 15 + 9 / 15 x 24
= 1/ 4-1/7+ 1 / 7 - 1/8 + 1/ 8 - 1/ 13 + 1/ 13 - 1/ 15 + 1/ 15 - 1/24
= 1/ 4 - 1/24
=5/ 24
Bài 3 :
b) Ta có 1+ 2 + 3 +4 + ...+ x =15
Nên \(\frac{x\left(x+1\right)}{2}=15\)
\(x\left(x+1\right)=30\)
=> \(x\left(x+1\right)=5.6\)
=> x = 5
Bài 2:
h; \(\dfrac{2}{3}\)\(x\) + 50% + \(x\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{3}\)\(x\) + \(\dfrac{1}{2}\) + \(x\) = \(\dfrac{1}{10}\)
(\(\dfrac{2}{3}\)\(x\) + \(x\)) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) (\(\dfrac{2}{3}\) + 1) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{1}{10}\) - \(\dfrac{1}{2}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{-2}{5}\)
\(x\) = \(\dfrac{-2}{5}\): \(\dfrac{5}{3}\)
\(x\) = - \(\dfrac{6}{25}\)
Lớp 5 chưa học số âm em nhé.
a) \(1010+1111+1212+.....+9898+9999\)\(=\frac{\left(1010+9999\right)\cdot\left(\frac{9999-1010}{1111-1010}+1\right)}{2}\)\(=\frac{11009\cdot\left(\frac{8989}{101}+1\right)}{2}\)\(=\frac{11009\cdot\left(89+1\right)}{2}\)\(=\frac{11009\cdot90}{2}\)\(=\frac{990810}{2}\)\(=495405\)
a) Khoảng cách của dãy số là:
1111-1010=101;1212-1111=101;...
Số số hạng của dãy số là:
(9999-1010):101+1=90(số)
Tổng:
(1010+9999)*90:2=495405
Đ/s:495405
Nhớ k mk nha!
#)Giải :
\(200-18:\left(372:3x-1\right)-28=166\)
\(\Leftrightarrow200-18:\left(372:3x-1\right)=194\)
\(\Leftrightarrow18:\left(372:3x-1\right)=6\)
\(\Leftrightarrow372:3x-1=3\)
\(\Leftrightarrow3x-1=124\)
\(\Leftrightarrow3x=125\)
\(\Leftrightarrow x=\frac{125}{3}\)
200 - 18 : (372 : 3 . x - 1) - 28 = 166
=> 200 - 18 : (372 : 3.x - 1) = 166 + 28
=> 200 - 18 : (372 : 3.x) - 1) = 194
=> 18 : (372 : 3.x - 1) = 200 - 194
=> 18 : (372 : 3.x - 1) = 6
=> 372 : 3.x - 1 = 18 : 6
=> 372 : 3.x - 1 = 3
=> 372 : 3.x = 3 + 1
=> 372 : 3.x = 4
=> 3.x = 372 : 4
=> 3.x = 93
=> x = 93 : 3
=> x = 31
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times99\times5}+\frac{1}{99\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{1}{5}\times\frac{99}{100}=\frac{99}{500}\)
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times90\times5}+\frac{1}{90\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{99}{500}\)
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33
( 1+2+3+.... +99) x (13x15 -12 x 15- 15)
= ( 1+2+3+.... +99) x 0
=0
(9999+ 1555144) : 55555 x 0 = 0
đs : 0