K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

A = 1.2.3  + 2.3.4  + …. +  98.99.100

4A = 4( 1.2.3  + 2.3.4  + …. +  98.99.100)

4A= 1.2.3.4 + 2.3.4.4 +....+98.99.100.4

4A= 1.2.3.4 + 2.3.4 (5-1) +....+98.99.100(101- 97)

4A= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ....+ 98.99.100.101 - 97.98.99.100

4A= 98.99.100.101

4A=97990200

A= 97990200:4

A=24497550

Vậy.....

15 tháng 7 2016

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

15 tháng 7 2016

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

28 tháng 8 2016

Đặt S=1.2.3+2.3.4+...+98.99.100

=>4S=1.2.3.4+2.3.4.4+...+98.99.100.4

=>3S=1.2.3(4-0)+2.3.4(5-1)+....+98.99.100(101-97)

=>4S=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+....+98.99.100.101-97.98.99.100

=>4S=98.99.100.101

=>S=24497550

28 tháng 2 2015

Ta xét:

\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3};\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4};...;\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)

Qua công thức trên, bạn có thể rút ra tổng quát: (đây là mình nói thêm)

\(\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n-2\right)}=\frac{2}{n.\left(n+1\right).\left(n+2\right)}\)

Ta suy ra:

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

       \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

      Thấy \(-\frac{1}{2.3}+\frac{1}{2.3}=0;-\frac{1}{3.4}+\frac{1}{3.4}=0;...\)

\(\Rightarrow2B=\frac{1}{2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

1 tháng 3 2015

Mình nhầm, công thức tổng quát mình nói thêm bạn đổi cái n-2 thành n+2 nha

7 tháng 2 2016

Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100

4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4

4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)

4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100

4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101

4A=98.99.100.101

=>A=98.99.100.101/4

7 tháng 2 2016

Nói trước , ai làm đúng mình cho 3 tích 

3 tháng 2 2016

Đặt S = 1.2.3 + 2.3.4 + 3.4.5 + .... + 98.99.100

=> 4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 98.99.100.4

=> 4S = 1.2.3.4 + 2.3.4.( 5 - 1 ) + 3.4.5.( 6 - 2 ) + .... + 98.99.100.( 101 - 97 )

=> 4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + .... + 98.99.100.101 - 97.98.99.100

=> 4S = ( 1.2.3.4 - 1.2.3.4 ) + ( 2.3.4.5 - 2.3.4.5 ) + ...... + ( 97.98.99.100 - 97.98.99.100 ) + 98.99.100.101

=> 4S = 98.99.100.101

=> S = \(\frac{98.99.100.101}{4}\)

=> S = 24497550

3 tháng 2 2016

99.100.101:3

28 tháng 1 2016

24497550

100% đó tick nha

28 tháng 1 2016

24497550

5 tháng 2 2016

bai toan nay kho qua

5 tháng 2 2016

mày là thằng nào mạo danh là olm hả?

10 tháng 3 2016

nhân tổng trên cho 2 ta có;

2/1.2.3+2/2.3.4+.........+2/98.99.100

=1/1.2-1/2.3+1/2.3-1/3.4+........+1/98.99-1/99.100

=1/1.2-1/99.100

=4949/9900

/

21 tháng 8 2017

549 + X = 1326
X = 1326 - 549
X = 777
X - 636 = 5618
X = 5618 + 636
X = 6254

21 tháng 8 2017

549 ,1326 ở đâu zậy bạn  !!! :/