K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2020

Ta có : A = (12 - 22) + (32 - 42) + .... + (20032 - 20042) + 20052

= (1 - 2)(1 + 2) + (3 - 4).(3 + 4) + .... + (2003 - 2004).(2003 + 2004) + 20052

= -1(1 + 2 + 3 + 4 + .... + 2003 + 2004) + 20052

= -1.2004.(2004 + 1) : 2 + 20052

= -1002.2005 + 2005.2005

= 2005.1003 = 2011015

29 tháng 1 2016

Đặt dãy trên là A

Ta có:

A=(12-22)+(32-42)+...+(20032-20042)+20052

A=(1-2)(1+2)+(3-4)(3+4)+...+(2003-2004)(2003+2004)+20052

A=(-1.3)+(-1.7)+(-1.11)+...+(-1.4007)+4020025

A=-3+(-7)+(-11)+...+(-4007)+4020025

A=-(3+7+11+...+4007)+4020025

A=-{(4007+3)[(4007-3):4+1]}+4020025

A=-(4010.1002)+4020025

A=-4018020+4020025

A=2005

29 tháng 1 2016

ai kết bạn không

21 tháng 12 2017

Ta có: \(K=1^2-2^2+3^2-4^2+......+2005^2\)

\(\Rightarrow K=1^2+\left(3^2-2^2\right)+\left(5^2-4^2\right)+.....\) \(+\left(2005^2-2004^2\right)\)

\(=1+\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)\)\(+......+\left(2005-2004\right)\left(2005+2004\right)\)

\(\Rightarrow K=1+5+9+13+.....+4009\)

Số số hạng trong tổng K là \(\frac{4009-1}{4}+1=1003\)

\(\Rightarrow K=\frac{\left(4009+1\right).1003}{2}=2005.1003\) = 2011015

27 tháng 10 2017

\(A=1^2-2^2+3^2-4^2+...-2004^2+2005^24^{ }-4^2\)

\(=1^2+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2005^2-2014^2\right)\)

\(=1+5+9+...+4009\)

số số hạng có trong A là

\(\left(4009-1\right):4+1=1003\)

tổng cấc số hạng có trong A là

\(\left(4009+1\right).1003:2=2011015\)

vậy A = 2011015

21 tháng 8 2016

ta có 12 - 22 = - 3

       32 - 42 = - 7

      .................

    20052 - 20062 =    -4011

-{(4011+3)[(4011-3):4+1]:2} = -2013021 

\(A=\frac{2004^3+1}{2004^2-2003}\)

\(A=\frac{2004+1}{1-2003}\)\(=\frac{2005}{-2002}\)

\(B=\frac{2005^3-1}{2005^2+2006}\)\(=\frac{2005-1}{1+2006}=\frac{2004}{2007}\)

\(\Rightarrow A>B\)

16 tháng 9 2018

\(A=\frac{2004^3+1}{2004^2-2003}\)

\(A=\frac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}\)

\(A=\frac{2005.\left(2004^2-2003\right)}{2004^2-2003}=2005\)

\(B=\frac{2005^3-1}{2005^2+2006}\)

\(B=\frac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=\frac{2004.\left(2005^2+2006\right)}{2005^2+2006}=2004\)

Tham khảo nhé~

24 tháng 7 2017

a, \(A=-1^2+2^2-3^2+4^2-...-2017^2+2018^2\)

\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(2018^2-2017^2\right)\)

\(=\left(1+2\right)\left(2-1\right)+\left(3+4\right)\left(4-3\right)+...+\left(2017+2018\right)\left(2018-2017\right)\)

\(=1+2+3+4+...+2017+2018\)

\(=\dfrac{\left(2018+1\right).2018}{2}=2037171\)

Vậy A=2037171

b, \(B=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)

\(=-\left[\left(2^2-1^2\right)+\left(4^2-3^2\right)+...\left(2004^2-2003^2\right)\right]+2005^2\)

\(=-\left[\left(1+2\right)\left(2-1\right)+\left(3+4\right)\left(4-3\right)+...+\left(2003+2004\right)\left(2004-2003\right)\right]+2005^2\)

\(=-\left(1+2+3+4+...+2004\right)+2005^2\)

\(=-\dfrac{2005.2004}{2}+2005^2=-2009010+4020025\)

\(=2011015\). Vậy B=2011015

c, \(C=\left(2+1\right)\left(2^2+1\right)...\left(2^{128}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{128}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{128}+1\right)\)\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{128}+1\right)\)

...

\(=\left(2^{128}-1\right)\left(2^{128}+1\right)=2^{256}-1\)

Vậy \(C=2^{256}-1\)

d, \(D=\left(5+1\right)\left(5^2+1\right)...\left(5^{2004}+1\right)-5^{2008}\)

\(\Rightarrow4D=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)...\left(5^{2004}+1\right)-5^{2008}\)

\(=\left(5^2-1\right)\left(5^2+1\right)...\left(5^{2004}+1\right)-5^{2008}\)

\(=\left(5^4-1\right)\left(5^4+1\right)...\left(5^{2004}+1\right)-5^{2008}\)

...

\(=\left(5^{2004}-1\right)\left(5^{2004}+1\right)-5^{2008}\)

\(=5^{4008}-1-5^{2008}\Rightarrow D=\dfrac{5^{4008}-5^{2008}-1}{4}\)

Vậy \(D=\dfrac{5^{4008}-5^{2004}-1}{4}\)

11 tháng 9 2018

\(1^2-2^2+3^2-4^2+...-2004^2+2005^2\)

\(=1^2-2^2+3^2-4^2+...+2003^2-2004^2+2005^2\)

\(=-\left(2^2-1^2\right)-\left(4^2-3^2\right)-...-\left(2004^2-2003^2\right)+2005^2\)

\(=-\left[\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(2004^2-2003^2\right)\right]+2005^2\)

\(=-\left[\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(2004-2003\right)\left(2004+2003\right)\right]+2005^2\)

\(=-\left[1+2+3+4+...+2003+2004\right]+2005^2\)

\(=-\dfrac{2004.2005}{2}+2005^2\)

\(=2011015\)

:D