K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

  \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

  \(=\frac{1}{1}-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-...-\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

   \(=1-\frac{1}{100}=\frac{99}{100}\)

3 tháng 8 2018

Còn câu b niwax nha các bn . Giúp mk với

3 tháng 8 2018

A=1-1/5+1/5-1/9+...+1/(n-4)-1/n

A=1-1/n

A=n-1/n

3 tháng 8 2018

= 1-1/5+1/5-1/9+1/9-1/13+...+1/n-4-1/n

=1-1/n

= n-1/n

14 tháng 6 2016

Hỏi đáp Toán

14 tháng 6 2016

a) S1 = \(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}\)

          = \(-\frac{1}{1}-\frac{1}{2}-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{99}-\frac{1}{100}\)

          = \(\frac{-1}{1}-\frac{1}{100}\)

          = \(-\frac{101}{100}\)

12 tháng 9 2019

1 Tính : 

a) \(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)

\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{n}\)

\(=\frac{1}{n}\)

b) \(B=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)

\(=\frac{4}{1.5}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\frac{1}{5}+\frac{1}{n}\)

\(=\frac{3}{5}+\frac{1}{n}\)

c) \(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)

\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Rightarrow C=1-B\left(1\right)\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

Lấy 2B trừ B ta có : 

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(B=1-\frac{1}{2^{10}}\left(2\right)\)

Thay (2) vào (1) ta có :

\(C=1-\left(1-\frac{1}{10}\right)\)

\(=1-1+\frac{1}{10}\)

\(=\frac{1}{10}\)

Vậy \(C=\frac{1}{10}\)

19 tháng 7 2020

M=\(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)

\(M=1-\frac{1}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(M=1-\frac{1}{5}-\frac{1}{5}+\frac{1}{n}\)

\(M=\frac{3}{5}+\frac{1}{n}\)

Mình chỉ giải đến đây thôi vì chẳng biết n bằng mấy cả

19 tháng 7 2020

= - (1-1/5 +1/5 -1/9 +1/9 -1/13 +1/n + 1/n+4)

=-(1-1/n+4)

=-1+1/n+4

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok

 

29 tháng 10 2015

Có dạng tổng quát như thế này nhé: 
\(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{k+n}\)

Trong trường hợp này là \(\frac{-4}{1.5}-\frac{4}{5.9}-...-\frac{4}{\left(n+4\right)n}=-\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)

Đáp án là: \(\frac{1}{n+4}-1\)