Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a hạ bậc rồi áp dụng cosa + cosb
Câu b thì mối liên hệ giữa tan với cot là ra
a. \(a^2+3a-b^2-3b-0\Leftrightarrow\left(a-b\right)\left(a+b+3\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}a=b\\a+b=-3\left(dpcm\right)\end{array}\right.\)
Bài 1:
\(P=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)
\(=120\left(3^x+...+3^{x+96}\right)⋮120\)
a + 1 sẽ chia hết cho 2, 3, 4, .... 10
a + 1 = BCNN(2; 3; 4; ...; 10) = 2520
=> a = 2519
\(A=\left|x+1\right|+5\)
\(\Rightarrow\left|x+1\right|+5\ge5\)
\(\Rightarrow\left|x+1\right|\ge0\)
\(\Rightarrow x+1\ge0\)
\(\Rightarrow x\ge-1\)
Mà A đạt GTNN, suy ra \(\left|x+1\right|\) nhỏ nhất
\(\Rightarrow x=-1\)
Thay \(x=-1\) vào biểu thức ta có:
\(A=\left|-1+1\right|+5=0+5=5\)
Vậy: \(Min_A=5\)
\(B=\left(x-1\right)^2=\left|y-3\right|+2\)
\(B=a^2-2a1+1^2=\left|y-3\right|+2\)
\(B=a^2-2a1+1=\left|y-3\right|+2\)
\(\Rightarrow a^2-2a1+1+2=\left|y-3\right|\)
\(\Rightarrow a\left(a-2\right)+1+2=\left|y-3\right|\)
\(\Rightarrow a\left(a-2\right)+3=\left|y-3\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)+3=y-3\\a\left(a-2\right)+3=-y-3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)=y-3-3\\a\left(a-2\right)=-y-3-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)=y-6\\a\left(a-2\right)=-y-6\end{array}\right.\)
\(\Rightarrow a^2-2a=-y-6\)
\(\Rightarrow a^2-2a+y=-6\)
\(\Rightarrow a\left(a-2\right)+y=-6\) (loại do âm)
\(a\left(a-2\right)=y-6\)
\(\Rightarrow-y+6=-a\left(a-2\right)\)
\(\Rightarrow6=y-a\left(a-2\right)\) (nhận)
Vậy: \(Min_B=6\)
khiêu khích à khỏi làm
Bài này cực dễ