Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2002^2}+\dfrac{1}{2003^2}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2001.2002}+\dfrac{1}{2002.2003}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2001}-\dfrac{1}{2002}+\dfrac{1}{2002}-\dfrac{1}{2003}\)
\(A< 1-\dfrac{1}{2003}< 1\)
Vậy \(A< 1\)
S = 1 - 2 + 22 - 23 + ....... + 22020
2S = 2(1 - 2 + 22 - 23 + ....... + 22020)
2S = 2 - 22 + 23 - 24 + ....... + 22021
S = (2 - 22 + 23 - 24 + ....... + 22021) - (1 - 2 + 22 - 23 + ....... + 22020)
S = 22021 - 1
3S = 3(22021 - 1)
3S - 22021 = 3(22021 - 1) - 22021
3S - 22021 = 3.22021 - 3 - 22021
➤ 3S - 22021 = 22021 . 2 - 3
Bài 2
a)Ta có:\(2001^{2002}+2002^{2003}\)
=\(\left(.....1\right)+2002^{2000}.2002^3\)
=\(\left(.....1\right)+\left(....6\right).\left(.....8\right)\)
=\(\left(.....9\right)\)không chia hết cho 2
b)Ta có:\(861^7+972^2\)
=\(\left(.....1\right)+\left(......4\right)\)
=\(\left(......5\right)\)chia hết cho 5
????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(S=2^{2019}-2^{2018}-2^{2017}-...-2^2-2-1\)
\(=2^{2019}-\left(1+2+2^2+...+2^{2017}+2^{2018}\right)\) (1)
Đặt \(Q=1+2+2^2+...+2^{2017}+2^{2018}\)
\(2Q=2+2^2+2^3+...+2^{2018}+2^{2019}\)
\(2Q-Q=2^{2019}-1\)
\(Q=2^{2019}-1\)(2)
Từ (1) và (2), ta được:
\(S=2^{2019}-\left(2^{2019}-1\right)=1\)