Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án + Giải thích các bước giải:
7/1×5+7/5×9+7/9×13+7/13×17+7/17×21
=7/4×(4/1×5+4/5×9+4/9×13+4/13×17+4/17×21)
=7/4×(1−1/5+1/5−1/9+1/9−1/13+1/13−1/17+1/17−1/21)
=7/4×(1+0+0+0+0−1/21)
=7/4×(1−1/21)
=7/4×2021
=5/3
nhớ tick nha
\(\dfrac{7}{1\times5}+\dfrac{7}{5\times9}+\dfrac{7}{9\times13}+\dfrac{7}{13\times17}\)\(+\) \(\dfrac{7}{17\times21}\)
= \(\dfrac{7}{4}\times\)( \(\dfrac{4}{1\times5}\)\(+\) \(\dfrac{4}{5\times9}\)\(+\) \(\dfrac{4}{9\times13}\)\(+\)\(\dfrac{4}{13\times17}\)\(+\)\(\dfrac{4}{17\times21}\))
= 7 \(\times\)(\(\dfrac{1}{1}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{17}-\dfrac{1}{21}\))
= 7\(\times\)(\(\dfrac{1}{1}-\dfrac{1}{21}\))
= \(\dfrac{7}{4}\)\(\times\) \(\dfrac{20}{21}\)
= \(\dfrac{5}{3}\)
Đặt \(A=\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+\frac{7}{9\cdot13}+\frac{7}{13\cdot17}+\frac{7}{17\cdot21}\)
\(\frac{4}{7}A=\frac{4}{7}\left(\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+\frac{7}{9\cdot13}+\frac{7}{13\cdot17}+\frac{7}{17\cdot21}\right)\)
\(\frac{4}{7}A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(\frac{4}{7}A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(\frac{4}{7}A=1-\frac{1}{21}\)
\(\frac{4}{7}A=\frac{20}{21}\)
\(A=\frac{20}{21}:\frac{4}{7}=\frac{20}{21}\cdot\frac{7}{4}=\frac{5}{3}\)
Đặt biểu thức trên là A
\(\frac{4xA}{7}=\frac{4}{1x5}+\frac{4}{5x9}+\frac{4}{9x13}+\frac{4}{13x17}+\frac{4}{17x21}\)
\(\frac{4xA}{7}=\frac{5-1}{1x5}+\frac{9-5}{5x9}+\frac{13-9}{9x13}+\frac{17-13}{13x17}+\frac{21-17}{17x21}\)
\(\frac{4xA}{7}=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(\frac{4xA}{7}=1-\frac{1}{21}=\frac{20}{21}\Rightarrow A=\frac{20}{21}.\frac{7}{4}=\frac{5}{3}\)
4/5x9 + 4/9x13 + 4/13x17 + 4/ 17x21 + 4/ 21x25=27.911628241
Ta có:
\(\frac{4}{5\times9}+\frac{4}{9\times13}+\frac{4}{13\times17}+\frac{4}{17\times21}+\frac{4}{21\times25}\)
= \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\)
= \(\frac{1}{5}-\left(\frac{1}{9}+\frac{1}{9}\right)-\left(\frac{1}{13}-\frac{1}{13}\right)-\left(\frac{1}{17}-\frac{1}{17}\right)-\left(\frac{1}{21}-\frac{1}{21}\right)-\frac{1}{25}\)
= \(\frac{1}{5}-\frac{1}{25}\)
= \(\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)
\(\dfrac{4\times x}{1\times5}\) + \(\dfrac{4\times x}{5\times9}\) + \(\dfrac{4\times x}{9\times13}\) + \(\dfrac{4\times x}{13\times17}\) = 16
\(x\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+\dfrac{4}{13\times17}\right)\) = 16
\(x\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{13}\) + \(\dfrac{1}{13}\) - \(\dfrac{1}{17}\)) = 16
\(x\) \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{17}\)) = 16
\(x\) \(\times\) \(\dfrac{16}{17}\) = 16
\(x\) = 16 : \(\dfrac{16}{17}\)
\(x\) = 17
\(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+\frac{4}{13\times17}+\frac{4}{17\times21}\)\(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)\(=1-\frac{1}{21}=\frac{20}{21}\)
#Y/n
M = 3/1x3 + 3/3x5 + 3/5x7 + ... + 3/45x47 + 3/47x49
M = 3/2 x (2/1x3 + 2/3x5 + 2/5x7 + ... + 2/45x47 + 2/47x49)
M = 3/2 x (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/45 - 1/47 + 1/47 - 1/49)
M = 3/2 x (1 - 1/49)
M = 3/2 x 48/49
M = 72/49
N tính tương tự, nhân N với 5/4
a) \(\dfrac{2}{1\times4}+\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+...+\dfrac{2}{97\times100}\)
\(=2.\left(\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{97\times100}\right)\)
\(=2.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=2.\left(1-\dfrac{1}{100}\right)\)
\(=2.\dfrac{99}{100}\)
\(=\dfrac{99}{50}\)
_____
b) \(\dfrac{3}{1\times5}+\dfrac{3}{5\times9}+\dfrac{3}{9\times13}+...+\dfrac{3}{97\times101}\)
\(=3.\left(\dfrac{1}{1\times5}+\dfrac{1}{5\times9}+\dfrac{1}{9\times13}+...+\dfrac{1}{97\times101}\right)\)
\(=3.\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=3.\left(1-\dfrac{1}{101}\right)\)
\(=3.\dfrac{100}{101}\)
\(=\dfrac{300}{101}\)
3/(1×5) + 3/(5×9) + 3/(9×13) + 3/(13×17) + 3/(17×21)
= 3/4 × (1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + 1/17 - 1/21)
= 3/4 × (1 - 1/21)
= 3/4 × 20/21
= 5/7