K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Tính :  (2x+y) (2y-x)

 =4xy-\(2x^2\)+\(2y^2\)-xy

=3xy-\(2x^2\)+\(2y^2\)

Học tốt

 ( 2x + y ) ( 2y - x )

= 4xy - 2x2 + 2y2 - xy

=  2y2 -  2x +  3xy

14 tháng 12 2020

2xy/x^2-y^2 + x-y/2x+2y + y/y-x =2xy/(x+y)(x-y) + x-y/2(x+y) + -y/x-y

=2xy.2/2(x+y)(x-y) + (x-y)^2/2(x+y)(x-y) + -y.2(x+y)/2(x+y)(x-y)

=4xy/2(x+y)(x-y) + x^2-2xy+y^2/2(x+y)(x-y) + -2xy-2y^2/2(x+y)(x-y)

=4xy+x^2-2xy+y^2-2xy-2y^2/2(x+y)(x-y)

=x^2-y^2/2(x+y)(x-y) =(x+y)(x-y)/2(x+y)(x-y)=1/2

22 tháng 12 2020

Thank!

a: \(A=x^4y+x^2y^3+x^2y^3+y^5-x^4y-y^5\)

\(=2x^2y^3\)

b: \(=4x^2-y^2-100\)

\(=4\cdot\left(-25\right)^2-10^2-100\)

=400-200=200

2 tháng 10 2015

 

\(A=2x^2+4xy-4x+2y^2-10xy+4y+2xy\)

\(A=\left(2x^2-4xy+2y^2\right)-\left(4x-4y\right)=2\left(x^2-2xy+y^2\right)-4\left(x-y\right)\)

\(A=2\left(x-y\right)^2-4\left(x-y\right)=2.3^2-4.3=6\)

8 tháng 7 2017

a, Ta có 

A= x(x+2)+y(y-2)-2xy +37

=x2+2x+y2-2y-2xy+37

=x2-2xy+y2+2(x-y)+37

=(x-y)2+2(x-y)+37

Vì x-y=7

=>(x-y)2+2(x-y)+37=72+14+37=100

KL

b, Ta có B=x2+4y2-2x+10+4xy-4y

=x2+4xy+4y2-2x-4y+10

=(x+2y)2-2(x+2y)+10

Vì x+2y=5 

=>(x+2y)2-2(x+2y)+10=52-10+10=25

KL

16 tháng 8 2015

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y)(2x-y)=0

<=> x-2y=0 hoặc 2x-y=0

*)Nếu x-2y=0=>x=2y

=>E=\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)

*)Nếu 2x-y=0=>2x=y

=>E=\(\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

21 tháng 5 2018

Ta có: x>y>0

\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}}\)

\(\Rightarrow E=\frac{x+y}{x-y}>0\)

Ta có : E\(=\frac{x+y}{x-y}\)

\(\Rightarrow E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}\)\(=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)

\(\Rightarrow E=\sqrt{9}\)( do E>0)

\(\Leftrightarrow E=3\)

30 tháng 4 2018

Từ đề bài \(\Rightarrow\left(x^2+2xy+y^2\right)-2x-2y+1+y^2-4y+4=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1+y^2-4y+4=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2=0\)

Lập luận tìm được \(x=-1;y=2\)  thay vào A (tự tính)

a: \(M=\left(x+y\right)^3+2\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3+2\left(x+y\right)^2\)

\(=7^3+2\cdot49=441\)

b: \(A=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2\cdot7+37\)

\(=49+14+37=100\)

3 tháng 8 2018

\(F=x^2\left(2x-3\right)+y^2\left(2y-3\right)\)

\(F=2x^3-3x^2+2y^3-3y^2\)

\(F=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(F=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)

\(F=2\left(1-3xy\right)-3\left(1-2xy\right)\)

\(F=2-6xy-3+6xy\)

\(F=-1\)