Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2xy/x^2-y^2 + x-y/2x+2y + y/y-x =2xy/(x+y)(x-y) + x-y/2(x+y) + -y/x-y
=2xy.2/2(x+y)(x-y) + (x-y)^2/2(x+y)(x-y) + -y.2(x+y)/2(x+y)(x-y)
=4xy/2(x+y)(x-y) + x^2-2xy+y^2/2(x+y)(x-y) + -2xy-2y^2/2(x+y)(x-y)
=4xy+x^2-2xy+y^2-2xy-2y^2/2(x+y)(x-y)
=x^2-y^2/2(x+y)(x-y) =(x+y)(x-y)/2(x+y)(x-y)=1/2
a: \(A=x^4y+x^2y^3+x^2y^3+y^5-x^4y-y^5\)
\(=2x^2y^3\)
b: \(=4x^2-y^2-100\)
\(=4\cdot\left(-25\right)^2-10^2-100\)
=400-200=200
\(A=2x^2+4xy-4x+2y^2-10xy+4y+2xy\)
\(A=\left(2x^2-4xy+2y^2\right)-\left(4x-4y\right)=2\left(x^2-2xy+y^2\right)-4\left(x-y\right)\)
\(A=2\left(x-y\right)^2-4\left(x-y\right)=2.3^2-4.3=6\)
a, Ta có
A= x(x+2)+y(y-2)-2xy +37
=x2+2x+y2-2y-2xy+37
=x2-2xy+y2+2(x-y)+37
=(x-y)2+2(x-y)+37
Vì x-y=7
=>(x-y)2+2(x-y)+37=72+14+37=100
KL
b, Ta có B=x2+4y2-2x+10+4xy-4y
=x2+4xy+4y2-2x-4y+10
=(x+2y)2-2(x+2y)+10
Vì x+2y=5
=>(x+2y)2-2(x+2y)+10=52-10+10=25
KL
2x2+2y2=5xy
<=>2x2-5xy+2y2=0
<=>(2x2-4xy)-(xy-2y2)=0
<=>2x(x-2y)-y(x-2y)=0
<=>(x-2y)(2x-y)=0
<=> x-2y=0 hoặc 2x-y=0
*)Nếu x-2y=0=>x=2y
=>E=\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
*)Nếu 2x-y=0=>2x=y
=>E=\(\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)
Ta có: x>y>0
\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}}\)
\(\Rightarrow E=\frac{x+y}{x-y}>0\)
Ta có : E\(=\frac{x+y}{x-y}\)
\(\Rightarrow E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}\)\(=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)
\(\Rightarrow E=\sqrt{9}\)( do E>0)
\(\Leftrightarrow E=3\)
Từ đề bài \(\Rightarrow\left(x^2+2xy+y^2\right)-2x-2y+1+y^2-4y+4=0\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1+y^2-4y+4=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2=0\)
Lập luận tìm được \(x=-1;y=2\) thay vào A (tự tính)
a: \(M=\left(x+y\right)^3+2\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3+2\left(x+y\right)^2\)
\(=7^3+2\cdot49=441\)
b: \(A=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2\cdot7+37\)
\(=49+14+37=100\)
\(F=x^2\left(2x-3\right)+y^2\left(2y-3\right)\)
\(F=2x^3-3x^2+2y^3-3y^2\)
\(F=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(F=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(F=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(F=2-6xy-3+6xy\)
\(F=-1\)
Tính : (2x+y) (2y-x)
=4xy-\(2x^2\)+\(2y^2\)-xy
=3xy-\(2x^2\)+\(2y^2\)
Học tốt
( 2x + y ) ( 2y - x )
= 4xy - 2x2 + 2y2 - xy
= 2y2 - 2x2 + 3xy