K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

1.

PT \(\Leftrightarrow (x+2)(x-3)(x-4)(x+6)=16x^2\)

\(\Leftrightarrow [(x+2)(x+6)][(x-3)(x-4)]=16x^2\)

\(\Leftrightarrow (x^2+8x+12)(x^2-7x+12)=16x^2\)

\(\Leftrightarrow (a+8x)(a-7x)=16x^2\) (đặt \(x^2+12=a\) )

\(\Leftrightarrow a^2+ax-72x^2=0\)

\(\Leftrightarrow (a-8x)(a+9x)=0\Rightarrow \left[\begin{matrix} a-8x=0\\ a+9x=0\end{matrix}\right.\)

Nếu \(a-8x=0\Leftrightarrow x^2+12-8x=0\Leftrightarrow (x-2)(x-6)=0\Rightarrow \left[\begin{matrix} x=2\\ x=6\end{matrix}\right.\)

Nếu \(a+9x=0\Leftrightarrow x^2+12+9x=0\Leftrightarrow x=\frac{-9\pm \sqrt{33}}{2}\)

Vậy...........

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

2.

PT \(\Leftrightarrow [(4x+7)(2x+1)][(4x+5)(x+1)]=9\)

\(\Leftrightarrow (8x^2+18x+7)(4x^2+9x+5)=9\)

\(\Leftrightarrow (2a+7)(a+5)=9\) (đặt \(a=4x^2+9x\) )

\(\Leftrightarrow 2a^2+17a+26=0\)

\(\Leftrightarrow (a+2)(2a+13)=0 \)\(\Rightarrow \left[\begin{matrix} a+2=0\\ 2a+13=0\end{matrix}\right.\)

Nếu \(a+2=0\Leftrightarrow 4x^2+9x+2=0\Leftrightarrow (4x+1)(x+2)=0\)

\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{4}\\ x=-2\end{matrix}\right.\)

Nếu \(2a+13=0\Leftrightarrow 8x^2+18x+13=0\) (pt này dễ thấy vô nghiệm)

Vậy.........

8 tháng 8 2021

b) x2 - 2x + 1 = 25x2

<=> (x - 1)2 - 25x2 = 0

<=> (x - 1 - 5x)(x - 1 + 5x)  = 0

<=> (-4x - 1)(6x - 1) = 0

<=> \(\orbr{\begin{cases}-4x-1=0\\6x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{1}{6}\end{cases}}\)

8 tháng 8 2021

c) 4x2 - 4x = 24

<=> x2 - x - 6 = 0

<=> x2 - 3x + 2x - 6 = 0

<=> x(x - 3) + 2(x - 3) = 0

<=> (x + 2)(x - 3) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

14 tháng 10 2020

a) 6x3 + 3x2 + 4x + 2

= ( 6x3 + 3x2 ) + ( 4x + 2 )

= 3x2( 2x + 1 ) + 2( 2x + 1 )

= ( 2x + 1 )( 3x2 + 2 )

=> (  6x3 + 3x2 + 4x + 2 ) : ( 3x2 + 2 ) = 2x + 1

b) 2x3 - 26x - 24

= 2( x3 - 13x - 12 )

= 2( x3 + 4x2 - 4x2 + 3x - 16x - 12 )

= 2[ ( x3 + 4x2 + 3x ) - ( 4x2 + 16x + 12 ) ]

= 2[ x( x2 + 4x + 3 ) - 4( x2 + 4x + 3 ) ]

= 2( x2 + 4x + 3 )( x - 4 )

=> ( 2x3 - 26x - 24 ) : ( x2 + 4x + 3 ) = 2( x - 4 ) = 2x - 8

c) x3 - 7x + 6 

= x3 - 3x2 + 3x2 + 2x - 9x - 6

= ( x3 - 3x2 + 2x ) + ( 3x2 - 9x + 6 )

= x( x2 - 3x + 2 ) + 3( x2 - 3x + 2 )

= ( x2 - 3x + 2 )( x + 3 )

=> ( x3 - 7x + 6 ) : ( x + 3 ) = x2 - 3x + 2

14 tháng 10 2020

a,\(\left(6x^3+3x^2+4x+2\right)\div\left(3x^2+2\right)\)

\(=\left[3x^2\left(2x+1\right)+2\left(2x+1\right)\right]\div\left(3x^2+2\right)\)

\(=\left[\left(3x^2+2\right)\left(2x+1\right)\right]\div\left(3x^2+2\right)\)

\(=2x+1\)

28 tháng 11 2016

a)\(2x^4-6x^3+x^2+6x-3=0\)

\(\Leftrightarrow2x^4-6x^3+3x^2-2x^2+6x-3=0\)

\(\Leftrightarrow x^2\left(2x^2-6x+3\right)-\left(2x^2-6x+3\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(2x^2-6x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x^2-6x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+1=0\\2x^2-6x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\\Delta_{2x^2-6x+3}=\left(-6\right)^2-4\left(2.3\right)=12\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\x_{1,2}=\frac{6\pm\sqrt{12}}{4}\end{array}\right.\)

b)\(x^3+9x^2+26x+24=0\)

\(\Leftrightarrow x^3+5x^2+6x+4x^2+20x+24=0\)

\(\Leftrightarrow x\left(x^2+5x+6\right)+4\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x^2+5x+6\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\\x=-4\end{array}\right.\)