K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Hỏi đáp Toán

31 tháng 10 2017

\(16^2\)\(x^{2^2}\)

=>(16-\(x^2\))(16+\(x^2\))

22 tháng 8 2021

\(\left(4x+1\right)\left(12x-1\right)\left(3x-2\right)\left(x+1\right)-4\) (Sửa đề)

\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x-1=n\)

\(=\left(n+3\right)n-4\)

\(=n^2+3n-4\)

\(=n^2-n+4n-4\)

\(=n\left(n-1\right)+4\left(n-1\right)\)

\(=\left(n-1\right)\left(n+4\right)\)

\(=\left(12x^2+11x-1-1\right)\left(12x^2+11x-1+4\right)\)

\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

22 tháng 8 2021

\(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\)

\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)(1)

Đặt \(\left(3x^2+7x+4\right)=n\)lúc đó (1):

\(\left(12n+1\right)n=6\)

\(\Rightarrow\hept{\begin{cases}n=0,75\\n=\frac{2}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)

Y
23 tháng 5 2019

\(\frac{x}{y+z}=1-\left(\frac{y}{z+x}+\frac{z}{x+y}\right)\)

\(=1-\frac{xy+y^2+xz+z^2}{\left(x+z\right)\left(x+y\right)}\) \(=\frac{x^2+xy+xz+yz-xy-y^2-xz-z^2}{\left(x+z\right)\left(x+y\right)}\)

\(=\frac{x^2+yz-y^2-z^2}{\left(x+y\right)\left(x+z\right)}=\frac{\left(x^2+yz-y^2-z^2\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(=\frac{x^2y+x^2z-y^3-z^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

\(\Rightarrow\frac{x^2}{y+z}=\frac{x^3y+x^3z-xy^3-xz^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

+ CM tương tự rồi công vế theo vế ta đc

BT = 0

24 tháng 2 2020

Giải:

\(\frac{1+3x}{6}-\frac{2+x}{9}=-4+x\)

\(\text{⇔}\frac{3+9x}{18}-\frac{4+2x}{18}=-\frac{72}{18}+\frac{18x}{18}\)

\(\text{⇔}3+9x-4+2x=-72+18x\)

\(\text{⇔}3+9x-4+2x+72-18x=0\)

\(\text{⇔}71-7x=0\)

\(\text{⇔}x=\frac{71}{7}\)

Vậy...

Chúc bạn học tốt@@

14 tháng 10 2018

đề là gì vậy

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Cách 1:

Ta có:

\(A=n^4-6n^3+27n^2-54n+32=(n^4-n^3)-5n^3+5n^2+22n^2-22n-32n+32\)

\(=n^3(n-1)-5n^2(n-1)+22n(n-1)-32(n-1)\)

\(=(n-1)(n^3-5n^2+22n-32)\)

\(=(n-1)(n^3-2n^2-3n^2+6n+16n-32)\)

\(=(n-1)[n^2(n-2)-3n(n-2)+16(n-2)]\)

\(=(n-1)(n-2)(n^2-3n+16)\)

Ta thấy $(n-1)(n-2)$ là tích 2 số nguyên liên tiếp nên \((n-1)(n-2)\vdots 2\)

\(\Rightarrow A=(n-1)(n-2)(n^2-3n+16)\vdots 2\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Cách 2:

\(A=n^4-6n^3+27n^2-54n+32\)

\(=(n^4+27n^2)-(6n^3+54n-32)\)

\(=n^2(n^2+27)-2(3n^3+27n-16)\)

Ta thấy \(n^2+27-n^2=27\) lẻ nên $n^2, n^2+27$ khác tính chẵn lẻ

Do đó trong 2 số $n^2$ và $n^2+27$ có 1 số chẵn, 1 số lẻ

\(\Rightarrow n^2(n^2+27)\vdots 2\)

\(2(3n^3+27n-16)\vdots 2\)

Suy ra \(A=n^2(n^2+27)-2(3n^3+27n-16)\vdots 2\)

Ta có đpcm.