Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đạt A=2^2+4^2+6^2+...+20^2
A=2^2X(1^2+2^2+3^2+...+10^2) (1)
Mà 1^2+2^2+3^2+...+10^2=385(2)
Thay (2) vào (1), có: A=2^2x385
A=4X385=1540
Vậy 2^2+4^2+6^2+...+20^2 = 1540
A=2^2X(1^2+2^2+3^2+...+10^2) (1)
Mà 1^2+2^2+3^2+...+10^2=385(2)
Thay (2) vào (1), có: A=2^2x385
A=4X385=1540
Vậy 2^2+4^2+6^2+...+20^2 = 1540
\(\Leftrightarrow\frac{2}{5.8}+\frac{2}{8.11}+...+\frac{2}{x\left(x+3\right)}=\frac{202}{1540}\)
\(\Leftrightarrow\frac{2}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{202}{1540}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{308}\)
\(\Leftrightarrow x+3=308\)
\(\Leftrightarrow x=305\)
Vậy x=305
1.
a) \(x^3-\frac{1}{2}=\left(-\frac{3}{8}\right)\)
\(\Rightarrow x^3=\left(-\frac{3}{8}\right)+\frac{1}{2}\)
\(\Rightarrow x^3=\frac{1}{8}\)
\(\Rightarrow x^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}.\)
b) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=\left(-2\right)+1\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\left(-1\right):2\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}.\)
c) \(17+3^x=98\)
\(\Rightarrow3^x=98-17\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy \(x=4.\)
Chúc bạn học tốt!
Mình cảm mơn ^^
sẵn tiện có thể giúp mình cách tính nhân chia của tỉ lệ thuận và nghịch được không? Mình hơi rối chỗ này á
\(A=202\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(=202\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(=-202\left(1-\frac{1}{200^2}\right)\left(1-\frac{1}{199^2}\right)\left(1-\frac{1}{198^2}\right)...\left(1-\frac{1}{101^2}\right)\)
\(=-202\left(\frac{199.201}{200^2}\right).\left(\frac{198.200}{199^2}\right).\left(\frac{197.199}{198^2}\right)...\left(\frac{102.100}{101^2}\right)\)
\(=-202.\frac{199.201.198.200.197.199...100.102}{200^2.199^2.198^2...101^2}\)
\(=-202.\frac{\left(199.198.197...100\right)\left(201.200.199...102\right)}{\left(200.199.198...101\right)\left(200.199.198...101\right)}\)
\(=-202.\frac{1.201}{2.101}=-202.\frac{201}{202}=-201\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(\frac{1}{2^2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}>\frac{1}{3.4}\)
\(\frac{1}{4^2}>\frac{1}{4.5}\)
\(............\)
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(\Rightarrow\)\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow\)\(A>\frac{1}{2}-\frac{1}{101}\)
\(\Rightarrow\)\(A>\frac{99}{202}\) \(\left(1\right)\)
Lại có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\)\(A< 1-\frac{1}{100}\)
\(\Rightarrow\)\(A< \frac{99}{100}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{99}{202}< A< \frac{99}{100}\) ( đpcm )
Vậy \(\frac{99}{202}< A< \frac{99}{100}\)
Chúc bạn học tốt ~
1) \(23^{401}+38^{202}-2^{433}=23^{4.100}.23+38^{4.50}.38^2-2^{4.108}.2^1=\left(..1\right).23+\left(..6\right).1444-\left(..6\right).2=\left(..3\right)+\left(..4\right)-\left(..2\right)=\left(..5\right)\)