K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Đặt  \(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+......+\frac{2}{100\cdot103}\)

\(B=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)

\(B=\frac{2}{3}\cdot\frac{102}{103}\)

\(\Rightarrow B=\frac{68}{103}\)

30 tháng 6 2017

Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)

\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{103}\right)\)

\(A=\frac{2}{3}\cdot\frac{102}{103}\)

\(A=\frac{68}{103}\)

31 tháng 5 2018

Dấu \(.\)là dấu nhân 

Ta có : 

\(E=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)

\(\Rightarrow E=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{2}{100.103}\right)\)

\(\Rightarrow E=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\Rightarrow E=\frac{2}{3}.\left(1-\frac{1}{103}\right)\)

\(\Rightarrow E=\frac{2}{3}.\frac{102}{103}\)

\(\Rightarrow E=\frac{68}{103}\)

Vậy \(E=\frac{68}{103}\)

~ Ủng hộ nhé 

31 tháng 5 2018

\(E=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+...+\frac{2}{100\cdot103}\)

\(E=2\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{100\cdot103}\right)\)

Gọi tổng trong ngoặc là F

\(\Rightarrow3F=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{100\cdot103}\)

\(\Rightarrow3F=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)

\(\Rightarrow3F=1-\frac{1}{103}=\frac{102}{103}\)

\(\Rightarrow F=\frac{102}{103\cdot3}=\frac{34}{103}\)

\(\Leftrightarrow E=2\cdot\frac{34}{103}=\frac{68}{103}\)

Vậy......

14 tháng 8 2018

S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103

S=1/1-1/103

S=102/103

Vì 102/103<1 nên S<1

14 tháng 8 2018

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{100\cdot103}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)

\(S=1-\frac{1}{103}\)

\(S=\frac{102}{103}< 1\)

DD
31 tháng 1 2021

\(\frac{2}{1\times4}+\frac{2}{4\times7}+\frac{2}{7\times10}+...+\frac{2}{37\times40}\)

\(=\frac{2}{3}\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{37\times40}\right)\)

\(=\frac{2}{3}\times\left(\frac{4-1}{1\times4}+\frac{7-4}{4\times7}+\frac{10-7}{7\times10}+...+\frac{40-37}{37\times40}\right)\)

\(=\frac{2}{3}\times\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)

\(=\frac{2}{3}\times\left(1-\frac{1}{40}\right)=\frac{13}{20}\)

6 tháng 6 2019

\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)

\(=\frac{11}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(=\frac{11}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=\frac{11}{3}\left(1-\frac{1}{103}\right)\)

Tự tính

6 tháng 6 2019

\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)

\(\frac{11}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(\frac{11}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\frac{11}{3}.\left(1-\frac{1}{103}\right)\)

\(\frac{11}{3}.\frac{102}{103}\)

\(\frac{374}{103}\)

17 tháng 12 2022

\(=\dfrac{2}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{31\cdot34}\right)\)

\(=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)\)

\(=\dfrac{2}{3}\cdot\dfrac{33}{34}=\dfrac{11}{17}\)

8 tháng 7 2019

\(D=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(D=\frac{2}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\)

\(D=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(D=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(D=\frac{2}{3}\cdot\frac{99}{100}=\frac{33}{50}\)

8 tháng 7 2019

Em cảm ơn chị

\(F=\dfrac{1}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{100\cdot103}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{102}{103}=\dfrac{34}{103}\)