Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 1⋅2⋅3+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+48+3⋅6⋅9+4⋅8⋅12
= 6+48+162+4⋅8⋅12
= 6+48+162+384
= 600
b . Ta có \(A=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}.\)
Ta có : \(\frac{2010}{2011+2012}< \frac{2010}{2011}\) và \(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
=> \(\frac{2010+2011}{2011+2012}< \frac{2010}{2011}+\frac{2011}{2012}\)
=> A < B
Ta có : \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{9}{10}=\frac{x}{2010}\)
=> \(\frac{1.2.3.....9}{2.3.4....10}=\frac{x}{2010}\)
=> \(\frac{1}{10}=\frac{x}{2010}\)
=> x = 2010/10
=> x = 201
\(\left(2012\cdot2010+2010\cdot2008\right)\cdot\left(1+\frac{1}{2}:1\frac{1}{2}-1\frac{1}{3}\right)\)
=> \(\left(2020\cdot2010\right)\left(\frac{3}{3}+\frac{1}{3}-\frac{4}{3}\right)=\left(2020\cdot2010\right)\cdot0=0\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{x\times\left(x+1\right)}{2}}=\frac{2015}{2017}\)
\(\Leftrightarrow\frac{1}{2}\)[\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{x\times\left(x+1\right)}{2}}\)]=\(\frac{1}{2}.\frac{2015}{2017}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\times\left(x+1\right)}=\frac{2015}{4034}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2015}{4034}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4034}=\frac{1}{2017}\)<=> x+1=2017<=>x=2016