K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

\(\left(2-\sqrt{5}\right)^2=2^2-2.2.\sqrt{5}+\left(\sqrt{5}\right)^2=4-4\sqrt{5}+5=9-4\sqrt{5}\)

14 tháng 8 2021

\(29-4\sqrt{5}\)

23 tháng 7 2021

Hướng giải :

Điều kiện xác định x>=5/2

Nhân căn 2 cả 2 vế của pt ta được

\(\sqrt{2x+4+6\sqrt{2x-5}} + \sqrt{2x-4-2\sqrt{2x-5}} = 4 \\ \sqrt{(\sqrt{2x-5} + 3)^2} +\sqrt{(\sqrt{2x-5} -1)^2} =4\\ |\sqrt{2x-5} +3| + | \sqrt{2x-5} -1| =4\)

Ta có : |A| + |B| >= |A+B|

Suy ra VT >= VP

Dấu = xảy ra <=> AB >= 0

Mà A >= 0 ; suy ra B >=0

=> căn (2x-5) >= 1

=> 2x-5 >=1

=> 2x>=6

=> x>=3

22 tháng 6 2021

a) A= \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

Vì \(\left\{{}\begin{matrix}2=\sqrt{4}< \sqrt{5}\\2\sqrt{2}=\sqrt{8}>\sqrt{5}\end{matrix}\right.\) nên A = \(\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

                                              = \(\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\)

                                              = \(2\left(\sqrt{2}-1\right)\)

 

22 tháng 6 2021

b) B = \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\) (B > 0)

Ta có:

B2 = \(6+2\sqrt{5}-2\sqrt{\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}+6-2\sqrt{5}\)

     = \(12-2\sqrt{36-20}\)

     = \(12-8\)

     = \(4\)

\(\Rightarrow\) B =\(\pm2\) nhưng vì B > 0 nên B = 2

Vậy B = 2

25 tháng 9 2021

a)A=\(2\sqrt{3}-8\sqrt{3}+7\sqrt{3}=\sqrt{3}\)

b)B\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}=3-\sqrt{5}+\sqrt{5}-2=1\)

d)\(=\dfrac{\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)}{1}+1-\sqrt{5}-\dfrac{11\left(2\sqrt{5}-3\right)}{11}=5\sqrt{5}+5-10-2\sqrt{5}+1-\sqrt{5}-2\sqrt{5}+3=-1\)

23 tháng 9 2023

\(a,\dfrac{2}{\sqrt{3}-\sqrt{5}}+\dfrac{3-2\sqrt{3}}{\sqrt{3}-2}\)

\(=\dfrac{5-3}{\sqrt{3}-\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}\)

\(=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\sqrt{3}\)

\(=\sqrt{5}+\sqrt{3}+\sqrt{3}\)

\(=\sqrt{5}+2\sqrt{3}\)

\(b,\dfrac{5-\sqrt{5}}{\sqrt{5}-1}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+3}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)

\(=\sqrt{5}+\dfrac{5-2\sqrt{15}+3}{5-3}\)

\(=\dfrac{2\sqrt{5}+8-2\sqrt{15}}{2}\)

\(=\dfrac{2\cdot\left(\sqrt{5}+4-\sqrt{15}\right)}{2}\)

\(=\sqrt{5}-\sqrt{15}+4\)

#\(Toru\)

a) Ta có: \(A=\sqrt{\sqrt{3}+\sqrt{2}}\cdot\sqrt{\sqrt{3}-\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)

\(=\sqrt{3-2}=1\)

b) Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{3}\)

25 tháng 6 2021

`A=sqrt{sqrt3+sqrt2}.sqrt{sqrt3-sqrt2}`

`=sqrt{(sqrt3+sqrt2)(sqrt3-sqrt2)}`

`=sqrt{3-2}=1`

`b)B=sqrt{5-2sqrt6}+sqrt{5+2sqrt6}`

`=sqrt{3-2sqrt6+2}+sqrt{3+2sqrt6+2}`

`=sqrt{(sqrt3-sqrt2)^2}+sqrt{(sqrt3+sqrt2)^2}`

`=sqrt3-sqrt2+sqrt3+sqrt2=2sqrt3`

`c)C=3-sqrt{3-sqrt5}`

`=3-sqrt{(6-2sqrt5)/2}`

`=3-sqrt{(sqrt5-1)^2/2}`

`=3-(sqrt5-1)/sqrt2`

`=3-(sqrt{10}-sqrt2)/2`

`=(6-sqrt{10}+sqrt2)/2`

25 tháng 9 2021

\(1,=20-7=13\\ b,=12-50=-38\\ c,=\sqrt{7}-2+\sqrt{7}+2=2\sqrt{7}\\ d,=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\\ e,=11+2\sqrt{30}\\ f,=8-2\sqrt{15}\\ g,=11+2\sqrt{6}\)

25 tháng 9 2021

1) \(=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)

2) \(=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)

3) \(=\sqrt{7}-2+\sqrt{7}+2=2\sqrt[]{7}\)

4) \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)

5) \(=5+6-2\sqrt{5.6}=11-2\sqrt{30}\)

6) \(=3+5-2\sqrt{3.5}=8-4\sqrt{2}\)

7) \(=\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+2\sqrt{2\sqrt{2}.3}=11+2\sqrt{6\sqrt{2}}\)

3 tháng 7 2018

\(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}=\frac{\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right).\sqrt{\sqrt{5}-1}}{\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}}=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{\sqrt{5-1}}\)\(=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{2}=\frac{\sqrt{2}.\left(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}\right)}{2\sqrt{2}}=\frac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}}{2\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}}{2\sqrt{2}}=\frac{\left|\sqrt{5}+1\right|+\left|3-\sqrt{5}\right|}{2\sqrt{2}}=\frac{\sqrt{5}+1+3-\sqrt{5}}{2\sqrt{2}}\)

\(=\frac{4}{2\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Lại có: \(\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

\(\Rightarrow\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)

4 tháng 3 2022

sửa đề \(\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-\dfrac{11\left(2\sqrt{3}-3\right)}{3}\)

\(=\sqrt{5}+\sqrt{5}-1-\dfrac{11\left(2\sqrt{3}-3\right)}{3}=2\sqrt{5}-1-\dfrac{11\left(2\sqrt{3}-3\right)}{3}\)

\(=\dfrac{6\sqrt{5}-3-22\sqrt{3}+33}{3}=\dfrac{30+6\sqrt{5}-22\sqrt{3}}{3}\)

 

4 tháng 3 2022

Sao lại sửa đề vậy ạ mình ghi đúng đề mà=((