Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10A=10.\dfrac{10^{2004}+1}{10^{2005}+1}=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\\ 10B=10.\dfrac{10^{2005}+1}{10^{2006}+1}=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)
vì \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Giải:
Ta có:
A=\(\dfrac{10^{2019}-1}{10^{2020}+1}\)
10A=\(\dfrac{10^{2020}-10}{10^{2020}+1}\)
10A=\(\dfrac{10^{2020}+1-11}{10^{2020}+1}\)
10A=\(1+\dfrac{-11}{10^{2020}+1}\)
Tương tự:
B=\(\dfrac{10^{2020}-1}{20^{2021}+1}\)
10B=\(1+\dfrac{-11}{10^{2021}+1}\)
Vì \(\dfrac{-11}{10^{2020}+1}< \dfrac{-11}{10^{2021}+1}\) nên 10A<10B
⇒A<B
Chúc bạn học tốt!
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)
\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)
Ta có: (b=a+1)
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}-\frac{1}{a+1}\)
\(=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=\frac{1}{ab}\)
k please!
Ta có: \(\frac{1}{A}-\frac{1}{B}=\frac{B}{AB}-\frac{A}{AB}=\frac{B-A}{AB}\)
Mà \(B=A+1\Rightarrow B-A=1\)
Như vậy : \(\frac{1}{A}-\frac{1}{B}=\frac{1}{AB}\)
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
\(\frac{1}{a}.\frac{1}{b}=\frac{1}{a}.\frac{1}{a+1}=\frac{1}{a\left(a+1\right)}\)
vậy \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}.\frac{1}{b}\)
\(\frac{1}{a}-\frac{1}{b}\) với b = a + 1
= \(\frac{b}{a.b}-\frac{a}{a.b}\)
= \(\frac{b-a}{a.b}\)
= \(\frac{a+1-a}{a.b}\)
= \(\frac{1}{a.b}\)
Vậy \(\frac{1}{a.b}=\frac{1}{a}-\frac{1}{b}\)