Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
\(\left(\frac{19}{2018}-2019\right).\frac{1}{2019}-\left(\frac{1}{2018}-2019\right).\frac{19}{2019}\)
\(=\frac{19}{2018}-2019.\frac{1}{2019}-\frac{-1}{2018}+2019.\frac{19}{2019}\)
\(=\left(\frac{19}{2018}-\frac{-1}{2018}\right)-\left(2019+2019\right).\left(\frac{1}{2019}.\frac{19}{2019}\right)\)
\(=\frac{18}{2018}-2038.\frac{19}{2019}\)
còn đâu tự tính nha
ta có quy đồng B ta dc(-9x10^2018-19x10^2019)/(10^2019x10^2018)
tương tự với C ta có (-19x10^2018-9x10^2019)/(10^2019x10^2018)
sau khi quy đồng ta thấy mẫu của B và C giống nhau từ đó ta so sánh tử số của B và C
tử số của B=10^2018x(-9-19x10)=10^2018x-199
C=10^2018x(-19-9x10)=10^2018x-109
ta thấy -199<-109=>B<C (dpcm)
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
Ta có :
\(A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\)
\(=\left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=57\cdot\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=19\cdot3\cdot\left(1+7^3+7^6+...+7^{2018}\right)⋮19\) (đpcm)
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)
\(\Leftrightarrow A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+....+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(\Leftrightarrow A=\left(1+7+49\right)+7^3\left(1+7+49\right)+...+7^{2018}\left(1+7+49\right)\)
\(\Leftrightarrow A=57+7^3\cdot57+...+7^{2018}\cdot57\)
\(\Leftrightarrow A=57\left(1+7^3+....+7^{2018}\right)\)
\(\Leftrightarrow A=3\cdot19\left(1+7^3+...+7^{2018}\right)\)
=> A chia 19 dư 0
\(\left(-\frac{5}{12}\right):\frac{7}{3}-\left(-\frac{5}{12}\right):\frac{7}{4}=\left(-\frac{5}{12}\right):\left(\frac{7}{3}-\frac{7}{4}\right)=\left(-\frac{5}{12}\right):\frac{7}{12}=-\frac{5}{7}\)
\(\left[\left(\frac{2}{5}\right)^0\right].\frac{19}{13}-\left(\frac{7}{3}\right)^{2019}.\frac{3}{7}^{2019}\)
\(=\left(\frac{2}{5}\right)^0.\frac{19}{13}-\left(\frac{7}{3}.\frac{3}{7}\right)^{2019}\)
\(=1.\frac{19}{13}-1^{2019}\)
\(=1.\frac{19}{13}-1\)
\(=\frac{19}{13}-1\)
\(=\frac{6}{13}\)
Bài giải
a, \(\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)
\(=\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)
\(=\left(-\frac{5}{12}\right)\cdot\frac{3}{7}-\left(-\frac{5}{12}\right)\cdot\frac{4}{7}\)
\(=\frac{-15}{84}+\frac{20}{84}=\frac{5}{84}\)
b, \(\left[\left(\frac{2}{5}\right)^0\right]^{2020}\cdot\frac{19}{37}-\left(\frac{7}{3}\right)^{2019}\cdot\frac{3^{2019}}{7}\)
\(=1^{2020}\cdot\frac{19}{37}-\frac{7^{2019}}{3^{2019}}\cdot\frac{3^{2019}}{7}\)
\(=\frac{19}{37}-7^{2018}\)
đáp án:100293