Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{20}}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{19}}\)
=> \(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
=> \(S=1-\frac{1}{2^{20}}\)
Đạt A = 2 + 2 2 + ... + 2 500
2A = 2 2 + 2 3 + .... + 2 501
2A - A = ( 2 2 + 2 3 + .... + 2 501 )
- ( 2 + 2 2 + ... + 2 500 )
A = 2 501 - 2
S = 12 + 22 + ... + 102
S = 1 + 4 + ... + 100
S = 385
\(S=\dfrac{2^2}{1.2}+\dfrac{2^2}{2.3}+\dfrac{2^2}{3.4}+...+\dfrac{2^2}{2022.2023}\)
\(S=2^2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)
\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2023}\right)\)
\(S=2^2.\dfrac{2022}{2023}\)
\(S=\dfrac{2^2.2022}{2023}=\dfrac{8088}{2023}\)
22s=2+22+...+22020
4S-S=(2+22+...+22020)-(1+2+22+....+22018)
3S=22020-1
S=(22020-1):3
Dat A =1+2+22+23+...+250
=> 2A=2+22+23+24+...+251
=> 2A-A= 2+22+23+24+...+250 - ( 1+2+22+23+...+250 )
=> A=251-1