Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{99.100}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2.\left(1-\frac{1}{100}\right)\)
\(=2.\frac{99}{100}=\frac{99}{50}\)
=\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\right)\)
=\(2\left(1-\frac{1}{100}\right)\)
=\(2\cdot\frac{99}{100}=\frac{99}{50}\)
Đặt tổng trên là A , ta có :
\(\frac{A}{2}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{A}{2}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{A}{2}=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{98}\right)+\left(\frac{1}{99}-\frac{1}{99}\right)\)\(\frac{A}{2}=\frac{99}{100}\)
\(A=\frac{99}{100}.2\)
\(A=\frac{99}{50}\)
\(S=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{98\times99}+\frac{2}{99\times100}\)
\(S=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(S=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(S=2\times\left(1-\frac{1}{100}\right)\)
\(S=2\times\frac{99}{100}\)
\(S=\frac{99}{50}\)
\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{98.99}+\frac{2}{99.100}\)
\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(S=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}+\frac{1}{100}\right)\)
\(S=2.\left(\frac{1}{1}-\frac{1}{100}\right)\\ S=2.\left(\frac{100}{100}+\frac{-1}{100}\right)\\ S=2.\frac{99}{100}\\ S=\frac{99}{50}\)
Ta có: Q=4 + 22 + 23 + .... + 220
2Q = 8 + 23 + 24 + ... + 221
2Q - Q = 221 - 4 - 22 + 8
Q = 221
Ta có:
\(1^3+2^3+3^3+...+100^3\)
\(=\left(1+2+3+...+100\right)^2\)
\(=5050^2\)
\(=25502500\)
Giải dụ đề bài cho: Tính: 13+23
Thì nếu như bạn thì làm như sau:
(1+2)3=33=27
mà đáng lẽ đáp án là: 13+23=1+8=9