Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow2A=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^9}\)
\(\Rightarrow2A=\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(\Rightarrow2A-A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow A=1-\frac{1}{2^9}=\frac{511}{512}\)
bài 1 :
ab - ba
= 10a + b - 10b - a
= (10a - a) - (10b - b)
= 9a - 9b
= 9(a - b) chia hết cho 9
A=1−3+5−7+...+2001−2003+2005S=1−3+5−7+...+2001−2003+2005
=(1−3)+(5−7)+...+(2001−2003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)
=(−2).1002+2005=(−2).1002+2005
=−2004+2005=−2004+2005
=1
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
=>\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
=>\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
=>\(S=1-\frac{1}{2^9}=\frac{511}{512}\)
Vậy \(S=\frac{511}{512}\)
Ta có : \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^9}\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^8}\)
\(\Rightarrow2S-S=1-\frac{1}{2^9}\)
\(\Leftrightarrow S=1-\frac{1}{2^9}\)
\(\frac{3}{2}+\frac{-7}{9}-\frac{-1}{2}-\frac{11}{9}\)
\(=\left(\frac{3}{2}-\frac{-1}{2}\right)+\left(\frac{-7}{9}-\frac{11}{9}\right)\)
\(=\frac{3+1}{2}+\frac{-7-11}{9}\)
\(=\frac{4}{2}+\frac{-18}{9}\)
\(=2-2\)
\(=0\)
1/A=1.21.22.23.24.25 câu 2 làm tương tự
A.2=2.22.23.24.25.26
A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)
A=26-1
3 A=1+3+32+33+...37
3.A=3+32+33+34...+38
2A=38-1
A=(38-1):2
đặt tổng trên là A
\(2A=2+2^2+2^3+...+2^{10}\)
\(A=2A-A=2^{10}-1\)