Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}\)
\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{256}-\dfrac{1}{512}\)
\(\Rightarrow A=1-\dfrac{1}{512}=\dfrac{511}{512}\)
A=[(-125).12].(-18)
A= (-1500) .(-18)
Vậy A= 27000
B= (-256).43+(-256).25-256.32
B=(-256).(43+25+32)
B=(-256).100
Vậy B=-25600
C=1-2+3-4+...+999-1000
C=(1-2)+(3-4)+.....+(999-1000)
C=(-1)+(-1)+...+(-1)
Nhận xét: vì mỗi số hạng trong C cách nhau 1 đơn vị.
=> C có số hạng là: (1000-1):1+1=1000
C có số cặp là: 1000:2=500
=>C=500.(-1)
Vậy C= -500
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}=\frac{255}{256}\)
\(B=\frac{5}{1.2}+\frac{5}{3.4}+...+\frac{5}{91.92}\)
\(B=5.\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{91.92}\right)\)
\(B=5.\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{91}-\frac{1}{92}\right)\)
\(B=5.\left(\frac{1}{47}+\frac{1}{48}+...+\frac{1}{92}\right)\)
\(a,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
\(b,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
Ta có :
\(\frac{1}{2}=1-\frac{1}{2}\)
\(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)
\(\frac{1}{8}=\frac{1}{4}-\frac{1}{8}\)
\(\frac{1}{16}=\frac{1}{8}-\frac{1}{16}\)
\(\frac{1}{32}=\frac{1}{16}-\frac{1}{32}\)
Thay vào ta có :
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)
\(=1-\frac{1}{32}\)
\(=\frac{31}{32}\)
\(c,\)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
Ta có :
\(\frac{1}{2}=1-\frac{1}{2}\)
\(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)
...................
\(\frac{1}{256}=\frac{1}{128}-\frac{1}{256}\)
Thay vào ta có :
\(=\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{128}-\frac{1}{256}\)
\(=1-\frac{1}{256}\)
\(=\frac{255}{256}\)
256 - 128 - 64 - 36 - 16 - 8 - 4 - 2 - 1
= (256 - 16) - (128 - 8) - (64 - 4) - (36 - 16) - (16 - 4 - 2) - 1
= 240 - 120 - 60 - 20 - 10 - 1
= 29
sửa tí
= (256 - 16) - (128 - 8) - (64 - 4) - (36 - 16) - 8 - 2 - 1
= 240 - 120 - 60 - 20 - 8 - 2 - 1
= -3
Q=\(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{256}\)
Q= \(1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+....+\left(\frac{1}{128}-\frac{1}{256}\right)\)
Q=\(1+1+\frac{1}{256}\)
Q=\(\frac{513}{256}\)
a) Đặt A=1/2 + 1/4 + 1/8 +...+ 1/256 + 1/512
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(A=1-\frac{1}{2^9}\)
b)\(\frac{a}{b}+\frac{4}{6}+\frac{2}{10}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b}+\frac{13}{15}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{19}{30}\)
\(\frac{4}{5}:\frac{a}{b}-\frac{6}{5}=\frac{3}{10}\)
\(\Rightarrow\frac{4}{5}:\frac{a}{b}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{8}{15}\)
A= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2A= 2(1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256)
= 1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=>A = 2A-A =1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 -1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128 - 1/256
=1-1/256
=255/256
A= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2A= 2(1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256)
= 1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=>A = 2A-A =1+1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 -1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128 - 1/256
=1-1/256
=255/256