Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(1+\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\)
\(=1+2\sqrt{2}+2-3\)
\(=2\sqrt{2}\)
b) \(\left(1+2\sqrt{3}-\sqrt{2}\right)\left(1+2\sqrt{3}+\sqrt{2}\right)\)
\(=\left(1+2\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)
\(=1+4\sqrt{3}+12-2\)
\(=9+4\sqrt{3}\)
\(P=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2011.2012.2013}\)
\(2P=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2011.2012.2013}\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{2011.2012}-\frac{1}{2012.2013}\right)\)
\(=\frac{1}{1.2}-\frac{1}{2012.2013}=\frac{2013.2012-2}{2025078}=\frac{4050154}{2025078}\)
\(\Rightarrow P=\frac{4050154}{2025078}:2\)
oh mình tính sai :
\(2P=\frac{1}{1.2}-\frac{1}{2013.2012}=\frac{2013.2012-2025078}{2013.2012}=\frac{4050156-2025078}{4050156}=\frac{2025078}{4050156}\)
\(\Rightarrow P=\frac{2025078}{4050156}:2=\frac{1}{4}\)
1/2 + 1/2 = 1 nhé
âm căn 3 + căn 3 hết .